Single-shot non-Gaussian Measurements for Optical Phase Estimation
- URL: http://arxiv.org/abs/2008.08185v2
- Date: Mon, 28 Sep 2020 15:03:32 GMT
- Title: Single-shot non-Gaussian Measurements for Optical Phase Estimation
- Authors: M. T. DiMario, F. E. Becerra
- Abstract summary: We show strategies for single-shot measurements for ab initio phase estimation of coherent states.
These strategies surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states.
This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of the properties of a physical system with minimal uncertainty is
a central task in quantum metrology. Optical phase estimation is at the center
of many metrological tasks where the value of a physical parameter is mapped to
the phase of an electromagnetic field, and single-shot measurements of this
phase are necessary. While there are measurements able to estimate the phase of
light in a single shot with small uncertainties, demonstrations of near-optimal
single-shot measurements for an unknown phase of a coherent state remain
elusive. Here, we propose and demonstrate strategies for single-shot
measurements for ab initio phase estimation of coherent states that surpass the
sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower
bound for coherent states. These single-shot estimation strategies are based on
real-time optimization of coherent displacement operations, single photon
counting with photon number resolution, and fast feedback. We show that our
demonstration of these optimized estimation strategies surpasses the heterodyne
limit for a wide range of optical powers without correcting for detection
efficiency with a moderate number of adaptive measurement steps. This is, to
our knowledge, the most sensitive single-shot measurement of an unknown phase
encoded in optical coherent states.
Related papers
- Homodyne detection is optimal for quantum interferometry with path-entangled coherent states [0.0]
homodyning schemes analyzed here achieve optimality (saturate the quantum Cram'er-Rao bound)
In the presence of photon loss, the schemes become suboptimal, but we find that their performance is independent of the phase to be measured.
arXiv Detail & Related papers (2024-05-22T00:25:02Z) - Time-reversal assisted quantum metrology with an optimal control [3.250902508512017]
We propose a protocol to overcome the shot noise limit and reach the Heisenberg scaling limit for parameter estimation.
We show that the uncertainty arising from a photon number measurement of the system can saturate the assisted Cream'er-Rao bound.
arXiv Detail & Related papers (2023-12-22T05:14:18Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum enhanced non-interferometric quantitative phase imaging [0.0]
We exploit entanglement to enhance imaging of a pure phase object in a non-interferometric setting.
We demonstrate a clear reduction of the uncertainty in the quantitative phase estimation.
This research also paves the way for applications at different wavelengths, e.g., X-ray imaging.
arXiv Detail & Related papers (2023-04-28T09:55:31Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Determination of the asymptotic limits of adaptive photon counting
measurements for coherent-state optical phase estimation [0.0]
We present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-Gaussian, photon counting, measurements with coherent displacements.
We show that these non-Gaussian phase estimation strategies have the same functional form as the canonical phase measurement in the limit differing only by a scaling factor.
arXiv Detail & Related papers (2022-08-14T02:47:06Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Deterministic quantum phase estimation beyond the ideal NOON state limit [0.0]
We develop a new type of phase estimation scheme based on a deterministic source of Gaussian squeezed vacuum states and high-efficiency homodyne detection.
Using a high-efficiency setup with a total loss of about 11% we achieve a Fisher Information of 15.8(6) rad2 per photon unparalleled by any other optical phase estimation technology.
The work represents a fundamental achievement in quantum metrology, and it opens the door to future quantum sensing technologies for the interrogation of light-sensitive biological systems.
arXiv Detail & Related papers (2021-11-18T15:37:13Z) - Remote Phase Sensing by Coherent Single Photon Addition [58.720142291102135]
We propose a remote phase sensing scheme inspired by the high sensitivity of the entanglement produced by coherent multimode photon addition on the phase set in the remote heralding apparatus.
We derive the optimal observable to perform remote phase estimation from heralded quadrature measurements.
arXiv Detail & Related papers (2021-08-26T14:52:29Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.