An Adaptive and Scalable ANN-based Model-Order-Reduction Method for
Large-Scale TO Designs
- URL: http://arxiv.org/abs/2203.10515v1
- Date: Sun, 20 Mar 2022 10:12:24 GMT
- Title: An Adaptive and Scalable ANN-based Model-Order-Reduction Method for
Large-Scale TO Designs
- Authors: Ren Kai Tan, Chao Qian, Dan Xu, Wenjing Ye
- Abstract summary: Topology Optimization (TO) provides a systematic approach for obtaining structure design with optimum performance of interest.
Deep learning-based models have been developed to accelerate the process.
MapNet is a neural network which maps the field of interest from coarse-scale to fine-scale.
- Score: 22.35243726859667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topology Optimization (TO) provides a systematic approach for obtaining
structure design with optimum performance of interest. However, the process
requires numerical evaluation of objective function and constraints at each
iteration, which is computational expensive especially for large-scale design.
Deep learning-based models have been developed to accelerate the process either
by acting as surrogate models replacing the simulation process, or completely
replacing the optimization process. However, most of them require a large set
of labelled training data, which are generated mostly through simulations. The
data generation time scales rapidly with the design domain size, decreasing the
efficiency of the method itself. Another major issue is the weak
generalizability of most deep learning models. Most models are trained to work
with the design problem similar to that used for data generation and require
retraining if the design problem changes. In this work a scalable deep
learning-based model-order-reduction method is proposed to accelerate
large-scale TO process, by utilizing MapNet, a neural network which maps the
field of interest from coarse-scale to fine-scale. The proposed method allows
for each simulation of the TO process to be performed at a coarser mesh,
thereby greatly reducing the total computational time. Moreover, by using
domain fragmentation, the transferability of the MapNet is largely improved.
Specifically, it has been demonstrated that the MapNet trained using data from
one cantilever beam design with a specific loading condition can be directly
applied to other structure design problems with different domain shapes, sizes,
boundary and loading conditions.
Related papers
- Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - An adaptive artificial neural network-based generative design method for
layout designs [17.377351418260577]
An adaptive artificial neural network-based generative design approach is proposed and developed.
A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored.
The performance of the proposed design method is demonstrated on two heat source layout design problems.
arXiv Detail & Related papers (2021-01-29T05:32:17Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.