An adaptive artificial neural network-based generative design method for
layout designs
- URL: http://arxiv.org/abs/2101.12410v1
- Date: Fri, 29 Jan 2021 05:32:17 GMT
- Title: An adaptive artificial neural network-based generative design method for
layout designs
- Authors: Chao Qian, Renkai Tan, Wenjing Ye
- Abstract summary: An adaptive artificial neural network-based generative design approach is proposed and developed.
A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored.
The performance of the proposed design method is demonstrated on two heat source layout design problems.
- Score: 17.377351418260577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Layout designs are encountered in a variety of fields. For problems with many
design degrees of freedom, efficiency of design methods becomes a major
concern. In recent years, machine learning methods such as artificial neural
networks have been used increasingly to speed up the design process. A main
issue of many such approaches is the need for a large corpus of training data
that are generated using high-dimensional simulations. The high computational
cost associated with training data generation largely diminishes the efficiency
gained by using machine learning methods. In this work, an adaptive artificial
neural network-based generative design approach is proposed and developed. This
method uses a generative adversarial network to generate design candidates and
thus the number of design variables is greatly reduced. To speed up the
evaluation of the objective function, a convolutional neural network is
constructed as the surrogate model for function evaluation. The inverse design
is carried out using the genetic algorithm in conjunction with two neural
networks. A novel adaptive learning and optimization strategy is proposed,
which allows the design space to be effectively explored for the search for
optimal solutions. As such the number of training data needed is greatly
reduced. The performance of the proposed design method is demonstrated on two
heat source layout design problems. In both problems, optimal designs have been
obtained. Compared with several existing approaches, the proposed approach has
the best performance in terms of accuracy and efficiency.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - An Adaptive and Scalable ANN-based Model-Order-Reduction Method for
Large-Scale TO Designs [22.35243726859667]
Topology Optimization (TO) provides a systematic approach for obtaining structure design with optimum performance of interest.
Deep learning-based models have been developed to accelerate the process.
MapNet is a neural network which maps the field of interest from coarse-scale to fine-scale.
arXiv Detail & Related papers (2022-03-20T10:12:24Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Mixed Integer Neural Inverse Design [27.43272793942742]
piecewise linear property, very common in everyday neural networks, allows for an inverse design formulation based on mixed-integer linear programming.
Our mixed-integer inverse design uncovers globally optimal or near optimal solutions in a principled manner.
arXiv Detail & Related papers (2021-09-27T09:19:41Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
This study proposes a reinforcement learning based generative design process, with reward functions maximizing the diversity of topology designs.
We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner.
arXiv Detail & Related papers (2020-08-17T06:50:47Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.