Mitigating Gender Bias in Machine Translation through Adversarial
Learning
- URL: http://arxiv.org/abs/2203.10675v1
- Date: Sun, 20 Mar 2022 23:35:09 GMT
- Title: Mitigating Gender Bias in Machine Translation through Adversarial
Learning
- Authors: Eve Fleisig and Christiane Fellbaum
- Abstract summary: We present an adversarial learning framework that addresses challenges to mitigate gender bias in seq2seq machine translation.
Our framework improves the disparity in translation quality for sentences with male vs. female entities by 86% for English-German translation and 91% for English-French translation.
- Score: 0.8883733362171032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine translation and other NLP systems often contain significant biases
regarding sensitive attributes, such as gender or race, that worsen system
performance and perpetuate harmful stereotypes. Recent preliminary research
suggests that adversarial learning can be used as part of a model-agnostic bias
mitigation method that requires no data modifications. However, adapting this
strategy for machine translation and other modern NLP domains requires (1)
restructuring training objectives in the context of fine-tuning pretrained
large language models and (2) developing measures for gender or other protected
variables for tasks in which these attributes must be deduced from the data
itself.
We present an adversarial learning framework that addresses these challenges
to mitigate gender bias in seq2seq machine translation. Our framework improves
the disparity in translation quality for sentences with male vs. female
entities by 86% for English-German translation and 91% for English-French
translation, with minimal effect on translation quality. The results suggest
that adversarial learning is a promising technique for mitigating gender bias
in machine translation.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Gender Bias in Machine Translation and The Era of Large Language Models [0.8702432681310399]
This chapter examines the role of Machine Translation in perpetuating gender bias, highlighting the challenges posed by cross-linguistic settings and statistical dependencies.
A comprehensive overview of relevant existing work related to gender bias in both conventional Neural Machine Translation approaches and Generative Pretrained Transformer models employed as Machine Translation systems is provided.
arXiv Detail & Related papers (2024-01-18T14:34:49Z) - A Tale of Pronouns: Interpretability Informs Gender Bias Mitigation for
Fairer Instruction-Tuned Machine Translation [35.44115368160656]
We investigate whether and to what extent machine translation models exhibit gender bias.
We find that IFT models default to male-inflected translations, even disregarding female occupational stereotypes.
We propose an easy-to-implement and effective bias mitigation solution.
arXiv Detail & Related papers (2023-10-18T17:36:55Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
Gender bias is a significant issue in machine translation, leading to ongoing research efforts in developing bias mitigation techniques.
We propose a bias mitigation method based on a novel approach.
Gender-Aware Contrastive Learning, GACL, encodes contextual gender information into the representations of non-explicit gender words.
arXiv Detail & Related papers (2023-05-23T12:53:39Z) - The Best of Both Worlds: Combining Human and Machine Translations for
Multilingual Semantic Parsing with Active Learning [50.320178219081484]
We propose an active learning approach that exploits the strengths of both human and machine translations.
An ideal utterance selection can significantly reduce the error and bias in the translated data.
arXiv Detail & Related papers (2023-05-22T05:57:47Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
It has been shown that machine translation models usually generate poor translations for named entities that are infrequent in the training corpus.
We propose DEEP, a DEnoising Entity Pre-training method that leverages large amounts of monolingual data and a knowledge base to improve named entity translation accuracy within sentences.
arXiv Detail & Related papers (2021-11-14T17:28:09Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
Language coverage bias is important for neural machine translation (NMT) because the target-original training data is not well exploited in current practice.
By carefully designing experiments, we provide comprehensive analyses of the language coverage bias in the training data.
We propose two simple and effective approaches to alleviate the language coverage bias problem.
arXiv Detail & Related papers (2021-06-07T01:55:34Z) - Improving Gender Translation Accuracy with Filtered Self-Training [14.938401898546548]
Machine translation systems often output incorrect gender, even when the gender is clear from context.
We propose a gender-filtered self-training technique to improve gender translation accuracy on unambiguously gendered inputs.
arXiv Detail & Related papers (2021-04-15T18:05:29Z) - Decoding and Diversity in Machine Translation [90.33636694717954]
We characterize differences between cost diversity paid for the BLEU scores enjoyed by NMT.
Our study implicates search as a salient source of known bias when translating gender pronouns.
arXiv Detail & Related papers (2020-11-26T21:09:38Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z) - Reducing Gender Bias in Neural Machine Translation as a Domain
Adaptation Problem [21.44025591721678]
Training data for NLP tasks often exhibits gender bias in that fewer sentences refer to women than to men.
Recent WinoMT challenge set allows us to measure this effect directly.
We use transfer learning on a small set of trusted, gender-balanced examples.
arXiv Detail & Related papers (2020-04-09T11:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.