論文の概要: An Intermediate-level Attack Framework on The Basis of Linear Regression
- arxiv url: http://arxiv.org/abs/2203.10723v1
- Date: Mon, 21 Mar 2022 03:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 16:04:37.432541
- Title: An Intermediate-level Attack Framework on The Basis of Linear Regression
- Title(参考訳): 線形回帰に基づく中間レベルの攻撃枠組み
- Authors: Yiwen Guo, Qizhang Li, Wangmeng Zuo, Hao Chen
- Abstract要約: 本論文はECCVにおいて,いくつかのベースライン対向例の転送性を改善するため,中間レベルアタック(中間レベルアタック)を提案し,本研究を実質的に拡張するものである。
我々は,中間レベルの相違点(対角的特徴と良性的特徴)から,対角的例の分類的損失への直接的な線形写像の確立を提唱する。
1) 様々な線形回帰モデルがマッピングを確立するために考慮可能であること,2) 最終的に得られた中間レベル差の大きさが逆転率と線形に相関していること,3) ベースラインアタックを複数回実行することで,さらなる性能向上が達成できること,などが示される。
- 参考スコア(独自算出の注目度): 89.85593878754571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper substantially extends our work published at ECCV, in which an
intermediate-level attack was proposed to improve the transferability of some
baseline adversarial examples. We advocate to establish a direct linear mapping
from the intermediate-level discrepancies (between adversarial features and
benign features) to classification prediction loss of the adversarial example.
In this paper, we delve deep into the core components of such a framework by
performing comprehensive studies and extensive experiments. We show that 1) a
variety of linear regression models can all be considered in order to establish
the mapping, 2) the magnitude of the finally obtained intermediate-level
discrepancy is linearly correlated with adversarial transferability, 3) further
boost of the performance can be achieved by performing multiple runs of the
baseline attack with random initialization. By leveraging these findings, we
achieve new state-of-the-arts on transfer-based $\ell_\infty$ and $\ell_2$
attacks.
- Abstract(参考訳): 本論文はECCVにおいて,いくつかのベースライン対向例の転送性を改善するため,中間レベル攻撃を提案した。
我々は,中間レベルの不一致(敵の特徴と良質な特徴)から,敵の例の分類予測損失への直接的線形写像の確立を提唱する。
本稿では,このようなフレームワークのコアコンポーネントを包括的研究と広範囲な実験によって深く掘り下げる。
私たちはそれを示します
1) 様々な線形回帰モデルは全て、マッピングを確立するために考慮することができる。
2) 最終的に得られた中間レベル差の大きさは, 逆転係数と線形に相関する。
3) ランダム初期化によるベースラインアタックを複数実行することで, さらなる性能向上を実現することができる。
これらの知見を活用することで、転送ベース $\ell_\infty$ および $\ell_2$ 攻撃に対する新しい最先端技術を実現する。
関連論文リスト
- Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation [49.480978190805125]
転送攻撃はブラックボックスアプリケーションに大きな関心を惹きつける。
既存の作業は、本質的に単一のレベルの目的 w.r.t. シュロゲートモデルを直接最適化する。
本稿では,上位レベル(UL)と下位レベル(LL)のサロゲート攻撃とのネスト関係を明示的に再構築する2レベル最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T07:45:27Z) - Ensemble Adversarial Defense via Integration of Multiple Dispersed Low Curvature Models [7.8245455684263545]
本研究では,攻撃伝達性を低減し,アンサンブルの多様性を高めることを目的とする。
損失曲率を表す2階勾配を, 対向的強靭性の重要な要因として同定する。
本稿では,複数変数の低曲率ネットワークモデルをトレーニングするための新しい正規化器を提案する。
論文 参考訳(メタデータ) (2024-03-25T03:44:36Z) - Generalization Properties of Adversarial Training for $\ell_0$-Bounded
Adversarial Attacks [47.22918498465056]
本稿では,ニューラルネットワークの重要なクラスに対する対人訓練の性能を理論的に特徴付けることを目的とする。
この設定での一般化の導出には2つの大きな課題がある。
論文 参考訳(メタデータ) (2024-02-05T22:57:33Z) - Adversarial Attack Based on Prediction-Correction [8.467466998915018]
ディープニューラルネットワーク(DNN)は、元の例に小さな摂動を加えることで得られる敵の例に対して脆弱である。
本稿では,新たな予測補正(PC)に基づく対角攻撃を提案する。
提案したPCベースの攻撃では、予測された例を最初に生成するために既存の攻撃を選択し、予測された例と現在の例を組み合わせて追加の摂動を決定する。
論文 参考訳(メタデータ) (2023-06-02T03:11:32Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
本研究では,PbRL(Preference-based Reinforcement Learning)の問題について,人間のフィードバックを用いて検討する。
我々は、報酬が軌道全体にわたって定義できる一般的な報酬設定について考察する。
我々は, 軌道毎の集中性によって上界に拘束できる新しい単極集中係数を導入する。
論文 参考訳(メタデータ) (2023-05-24T07:11:26Z) - Improving Adversarial Transferability via Intermediate-level
Perturbation Decay [79.07074710460012]
我々は,一段階の最適化で敵の例を再現する新しい中間レベル手法を開発した。
実験結果から, 種々の犠牲者モデルに対する攻撃において, 最先端技術よりも大きな差が認められた。
論文 参考訳(メタデータ) (2023-04-26T09:49:55Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Fair learning with Wasserstein barycenters for non-decomposable
performance measures [8.508198765617198]
本研究は,人口順の制約下での精度の最大化が,対応する回帰問題の解法と等価であることを示す。
この結果を線形屈折法分類尺度(例えば$rm F$-score、AM測度、平衡精度など)に拡張する。
論文 参考訳(メタデータ) (2022-09-01T13:06:43Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
教師なし領域適応(Unsupervised Domain Adaptation, UDA)の重要な目的は、ラベルなし対象データに対するモデル予測の信頼性を高めることである。
我々は,この戦略が,入力画像や中間特徴に対する敵対的訓練よりも予測信頼性を高める目的と,より効率的で相関性が高いことを示す。
論文 参考訳(メタデータ) (2022-08-26T19:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。