論文の概要: Phase-Aware Spoof Speech Detection Based on Res2Net with Phase Network
- arxiv url: http://arxiv.org/abs/2203.10793v1
- Date: Mon, 21 Mar 2022 08:15:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 18:49:46.117791
- Title: Phase-Aware Spoof Speech Detection Based on Res2Net with Phase Network
- Title(参考訳): res2netと位相ネットワークを用いた位相認識音声検出
- Authors: Juntae Kim, Sung Min Ban
- Abstract要約: 音声検出(SSD)は,自動話者検証システムにとって重要な対策である。
フェーズ情報は、多様な種類の偽造攻撃に対する一般化能力を確保するために考慮されなければならない。
Res2Netを搭載したフェーズネットワークはスプーフィング攻撃において大幅な性能向上を実現した。
- 参考スコア(独自算出の注目度): 6.903929927172917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spoof speech detection (SSD) is the essential countermeasure for
automatic speaker verification systems. Although SSD with magnitude features in
the frequency domain has shown promising results, the phase information also
can be important to capture the artefacts of certain types of spoofing attacks.
Thus, both magnitude and phase features must be considered to ensure the
generalization ability to diverse types of spoofing attacks. In this paper, we
investigate the failure reason of feature-level fusion of the previous works
through the entropy analysis from which we found that the randomness difference
between magnitude and phase features is large, which can interrupt the
feature-level fusion via backend neural network; thus, we propose a phase
network to reduce that difference. Our SSD system: phase network equipped
Res2Net achieved significant performance improvement, specifically in the
spoofing attack for which the phase information is considered to be important.
Also, we demonstrate our SSD system in both known- and unknown-kind SSD
scenarios for practical applications.
- Abstract(参考訳): スプーフ音声検出(SSD)は,自動話者検証システムに不可欠な対策である。
周波数領域にマグニチュード特徴を有するssdは有望な結果を示したが、位相情報は特定の種類のスプーフィング攻撃の成果を捉えるためにも重要である。
したがって、様々な種類のスプーフィング攻撃に対する一般化能力を確実にするために、大きさと位相の特徴の両方を考慮する必要がある。
本稿では,前者の特徴レベル融合の失敗原因について,エントロピー解析を用いて検討し,大域的特徴と位相的特徴とのランダム性差が大きいこと,バックエンドニューラルネットワークによる特徴レベル融合の中断が可能であること,その差を低減できる相ネットワークを提案する。
我々のSSDシステム:Res2Netを搭載した位相ネットワークは、特に位相情報を重要視するスプーフィング攻撃において、大幅な性能向上を実現した。
また,本論文では,実用アプリケーションにおいて,既知のSSDシナリオと未知のSSDシナリオの両方でSSDシステムを実証する。
関連論文リスト
- SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification [0.0]
侵入検知システム(IDS)は、複雑で多様なネットワーク攻撃を迅速かつ効率的に識別できるものではない。
SCGNetは,本研究で提案する新しいディープラーニングアーキテクチャである。
NSL-KDDデータセットは、それぞれ99.76%と98.92%の精度で、ネットワーク攻撃検出と攻撃タイプ分類の両方で有望な結果を示す。
論文 参考訳(メタデータ) (2024-10-29T09:09:08Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
ディジタルツイン(DT)は、リアルタイム監視、予測、意思決定能力の向上を具現化する。
本研究では,分散ネットワークDTシステムにおけるセキュリティ上の課題について検討し,その後のネットワークアプリケーションの信頼性を損なう可能性がある。
論文 参考訳(メタデータ) (2024-07-02T03:32:09Z) - Locality Sensitive Hashing for Network Traffic Fingerprinting [5.062312533373298]
ネットワークトラフィックのフィンガープリントにLSH(Locality-sensitive hashing)を用いる。
本手法は,ネットワーク内のデバイスを識別する際の精度を約94%向上し,最先端の精度を12%向上させる。
論文 参考訳(メタデータ) (2024-02-12T21:14:37Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
ネットワーク侵入検出(NID)における機械学習の原理的利用法を示す。
我々は、Bi-ALSTMをベースとした、おそらく最初のNIDSであるNetSentryを提案する。
XSSやWeb bruteforceなどの攻撃検出率を最大3倍に向上させるとともに、最先端技術よりもF1スコアが33%以上上昇することが実証された。
論文 参考訳(メタデータ) (2022-02-20T17:41:02Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - NAS-FAS: Static-Dynamic Central Difference Network Search for Face
Anti-Spoofing [94.89405915373857]
対面防止(FAS)は、顔認識システムを保護する上で重要な役割を担っている。
既存の手法は専門家が設計したネットワークに依存しており、タスクFASのサブ最適化ソリューションにつながる可能性がある。
本稿では,ニューラルサーチ(NAS)に基づく最初のFAS手法であるFAS-FASを提案する。
論文 参考訳(メタデータ) (2020-11-03T23:34:40Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
顔認識システムにおいて、顔の反偽造(FAS)が重要な役割を担っている。
最先端のFASメソッドの多くは、スタック化された畳み込みと専門家が設計したネットワークに依存している。
ここでは、中央差分畳み込み(CDC)に基づくフレームレベルの新しいFAS手法を提案する。
論文 参考訳(メタデータ) (2020-03-09T12:48:37Z) - Pelican: A Deep Residual Network for Network Intrusion Detection [7.562843347215287]
我々は、特別に設計された残留ブロックの上に構築されたディープニューラルネットワークであるペリカンを提案する。
ペリカンは、非常に低い誤報率を維持しながら、高い攻撃検出性能を達成することができる。
論文 参考訳(メタデータ) (2020-01-19T05:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。