Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions
- URL: http://arxiv.org/abs/2203.11353v2
- Date: Fri, 5 Apr 2024 15:37:53 GMT
- Title: Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions
- Authors: Jacob Watkins, Nathan Wiebe, Alessandro Roggero, Dean Lee,
- Abstract summary: We provide a framework for encoding time dependent dynamics as time independent systems.
First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system.
Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials.
- Score: 42.3779227963298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compared with time independent Hamiltonians, the dynamics of generic quantum Hamiltonians $H(t)$ are complicated by the presence of time ordering in the evolution operator. In the context of digital quantum simulation, this difficulty prevents a direct adaptation of time independent simulation algorithms for time dependent simulation. However, there exists a framework within the theory of dynamical systems which eliminates time ordering by adding a "clock" degree of freedom. In this work, we provide a computational framework, based on this reduction, for encoding time dependent dynamics as time independent systems. As a result, we make two advances in digital Hamiltonian simulation. First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system, and in doing so, provide the first qubitization-based approach to time dependent Hamiltonians that goes beyond Trotterization of the ordered exponential. Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials, then propose and analyze an algorithm based on these formulas. Unlike other algorithms of similar accuracy, the multiproduct approach achieves commutator scaling, meaning that this method outperforms existing methods for physically-local time dependent Hamiltonians. Our work reduces the disparity between time dependent and time independent simulation and indicates a step towards optimal quantum simulation of time dependent Hamiltonians.
Related papers
- A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian dynamics [27.781524610367782]
We show how Sambe-Howland's clock can serve as a unifying framework for simulating time-dependent Hamiltonian dynamics.
We also illustrate how this framework, combined with time-independent methods, can facilitate the development of efficient algorithms for simulating time-dependent dynamics.
arXiv Detail & Related papers (2024-11-05T15:26:44Z) - Variational-Cartan Quantum Dynamics Simulations of Excitation Dynamics [7.865137519552981]
Quantum dynamics simulations (QDSs) are one of the most highly anticipated applications of quantum computing.
Quantum circuit depth for implementing Hamiltonian simulation algorithms is commonly time dependent.
In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational Hamiltonian simulation.
arXiv Detail & Related papers (2024-06-20T09:11:46Z) - Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations [31.223649540164928]
We propose an alternative formalism that turns any non-autonomous unitary dynamical system into an autonomous unitary system.
This makes the simulation with time-dependent Hamiltonians not much more difficult than that of time-independent Hamiltonians.
We show how our new quantum protocol for time-dependent Hamiltonians can be performed in a resource-efficient way and without measurements.
arXiv Detail & Related papers (2023-12-05T14:59:23Z) - Optimal/Nearly-optimal simulation of multi-periodic time-dependent
Hamiltonians [0.0]
We establish a QET-based approach for simulating time-dependent Hamiltonians with multiple time-periodicity.
Overcoming the difficulty of time-dependency, our protocol can simulate the dynamics under multi-periodic time-dependent Hamiltonians.
arXiv Detail & Related papers (2023-01-16T01:53:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum algorithm for time-dependent Hamiltonian simulation by
permutation expansion [6.338178373376447]
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians.
We demonstrate that the cost of the algorithm is independent of the Hamiltonian's frequencies.
arXiv Detail & Related papers (2021-03-29T05:02:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.