Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations
- URL: http://arxiv.org/abs/2312.02817v1
- Date: Tue, 5 Dec 2023 14:59:23 GMT
- Title: Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations
- Authors: Yu Cao, Shi Jin and Nana Liu
- Abstract summary: We propose an alternative formalism that turns any non-autonomous unitary dynamical system into an autonomous unitary system.
This makes the simulation with time-dependent Hamiltonians not much more difficult than that of time-independent Hamiltonians.
We show how our new quantum protocol for time-dependent Hamiltonians can be performed in a resource-efficient way and without measurements.
- Score: 31.223649540164928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-autonomous dynamical systems appear in a very wide range of interesting
applications, both in classical and quantum dynamics, where in the latter case
it corresponds to having a time-dependent Hamiltonian. However, the quantum
simulation of these systems often needs to appeal to rather complicated
procedures involving the Dyson series, considerations of time-ordering,
requirement of time steps to be discrete and/or requiring multiple measurements
and postselection. These procedures are generally much more complicated than
the quantum simulation of time-independent Hamiltonians. Here we propose an
alternative formalism that turns any non-autonomous unitary dynamical system
into an autonomous unitary system, i.e., quantum system with a time-independent
Hamiltonian, in one higher dimension, while keeping time continuous. This makes
the simulation with time-dependent Hamiltonians not much more difficult than
that of time-independent Hamiltonians, and can also be framed in terms of an
analogue quantum system evolving continuously in time. We show how our new
quantum protocol for time-dependent Hamiltonians can be performed in a
resource-efficient way and without measurements, and can be made possible on
either continuous-variable, qubit or hybrid systems. Combined with a technique
called Schrodingerisation, this dilation technique can be applied to the
quantum simulation of any linear ODEs and PDEs, and nonlinear ODEs and certain
nonlinear PDEs, with time-dependent coefficients.
Related papers
- A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian dynamics [27.781524610367782]
We show how Sambe-Howland's clock can serve as a unifying framework for simulating time-dependent Hamiltonian dynamics.
We also illustrate how this framework, combined with time-independent methods, can facilitate the development of efficient algorithms for simulating time-dependent dynamics.
arXiv Detail & Related papers (2024-11-05T15:26:44Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Variational-Cartan Quantum Dynamics Simulations of Excitation Dynamics [7.865137519552981]
Quantum dynamics simulations (QDSs) are one of the most highly anticipated applications of quantum computing.
Quantum circuit depth for implementing Hamiltonian simulation algorithms is commonly time dependent.
In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational Hamiltonian simulation.
arXiv Detail & Related papers (2024-06-20T09:11:46Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Optimal/Nearly-optimal simulation of multi-periodic time-dependent
Hamiltonians [0.0]
We establish a QET-based approach for simulating time-dependent Hamiltonians with multiple time-periodicity.
Overcoming the difficulty of time-dependency, our protocol can simulate the dynamics under multi-periodic time-dependent Hamiltonians.
arXiv Detail & Related papers (2023-01-16T01:53:09Z) - Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions [42.3779227963298]
We provide a framework for encoding time dependent dynamics as time independent systems.
First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system.
Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials.
arXiv Detail & Related papers (2022-03-21T21:29:22Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Time periodicity from randomness in quantum systems [0.0]
Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
arXiv Detail & Related papers (2021-04-27T18:02:31Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.