DIANES: A DEI Audit Toolkit for News Sources
- URL: http://arxiv.org/abs/2203.11383v2
- Date: Thu, 28 Apr 2022 17:58:24 GMT
- Title: DIANES: A DEI Audit Toolkit for News Sources
- Authors: Xiaoxiao Shang, Zhiyuan Peng, Qiming Yuan, Sabiq Khan, Lauren Xie, Yi
Fang, Subramaniam Vincent
- Abstract summary: We present DIANES, a DEI Audit Toolkit for News Sources.
It consists of a natural language processing pipeline on the backend to extract quotes, speakers, titles, and organizations from news articles in real time.
- Score: 7.864608835252345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Professional news media organizations have always touted the importance that
they give to multiple perspectives. However, in practice the traditional
approach to all-sides has favored people in the dominant culture. Hence it has
come under ethical critique under the new norms of diversity, equity, and
inclusion (DEI). When DEI is applied to journalism, it goes beyond conventional
notions of impartiality and bias and instead democratizes the journalistic
practice of sourcing -- who is quoted or interviewed, who is not, how often,
from which demographic group, gender, and so forth. There is currently no
real-time or on-demand tool in the hands of reporters to analyze the persons
they quote. In this paper, we present DIANES, a DEI Audit Toolkit for News
Sources. It consists of a natural language processing pipeline on the backend
to extract quotes, speakers, titles, and organizations from news articles in
real time. On the frontend, DIANES offers the WordPress plugins, a Web monitor,
and a DEI annotation API service, to help news media monitor their own quoting
patterns and push themselves towards DEI norms.
Related papers
- Tracking the Newsworthiness of Public Documents [107.12303391111014]
This work focuses on news coverage of local public policy in the San Francisco Bay Area by the San Francisco Chronicle.
First, we gather news articles, public policy documents and meeting recordings and link them using probabilistic relational modeling.
Second, we define a new task: newsworthiness prediction, to predict if a policy item will get covered.
arXiv Detail & Related papers (2023-11-16T10:05:26Z) - Multilingual Coarse Political Stance Classification of Media. The
Editorial Line of a ChatGPT and Bard Newspaper [1.450405446885067]
We use ratings of authentic news outlets to create a multilingual corpus of news with coarse stance annotations.
We show that classifiers trained on this data are able to identify the editorial line of most unseen newspapers in English, German, Spanish and Catalan.
We observe that, similarly to traditional newspapers, ChatGPT editorial line evolves with time and, being a data-driven system, the stance of the generated articles differs among languages.
arXiv Detail & Related papers (2023-10-25T01:01:28Z) - From Nuisance to News Sense: Augmenting the News with Cross-Document
Evidence and Context [25.870137795858522]
We present NEWSSENSE, a novel sensemaking tool and reading interface designed to collect and integrate information from multiple news articles on a central topic.
NEWSSENSE augments a central, grounding article of the user's choice by linking it to related articles from different sources.
Our pilot study shows that NEWSSENSE has the potential to help users identify key information, verify the credibility of news articles, and explore different perspectives.
arXiv Detail & Related papers (2023-10-06T21:15:11Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
This paper presents BABE, a robust and diverse data set for media bias research.
It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level.
Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically.
arXiv Detail & Related papers (2022-09-29T05:32:55Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
Knowing a news article's slant and authenticity is of crucial importance in times of "fake news"
We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL)
WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists"
arXiv Detail & Related papers (2021-05-20T11:20:37Z) - hBert + BiasCorp -- Fighting Racism on the Web [58.768804813646334]
We are releasing BiasCorp, a dataset containing 139,090 comments and news segment from three specific sources - Fox News, BreitbartNews and YouTube.
In this work, we present hBERT, where we modify certain layers of the pretrained BERT model with the new Hopfield Layer.
We are also releasing a JavaScript library and a Chrome Extension Application, to help developers make use of our trained model in web applications.
arXiv Detail & Related papers (2021-04-06T02:17:20Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
We show that publicly available language models can reliably generate biased news content based on an input original news.
We also show that a large number of high-quality biased news articles can be generated using controllable text generation.
arXiv Detail & Related papers (2020-10-05T16:55:39Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
We propose using the political diversity of a website's audience as a quality signal.
Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards.
arXiv Detail & Related papers (2020-07-16T02:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.