A New Approach to Improve Learning-based Deepfake Detection in Realistic
Conditions
- URL: http://arxiv.org/abs/2203.11807v1
- Date: Tue, 22 Mar 2022 15:16:54 GMT
- Title: A New Approach to Improve Learning-based Deepfake Detection in Realistic
Conditions
- Authors: Yuhang Lu, Touradj Ebrahimi
- Abstract summary: Deep convolutional neural networks have achieved exceptional results on multiple detection and recognition tasks.
The impact of conventional distortions and processing operations found in imaging such as compression, noise, and enhancement are not sufficiently studied.
This paper proposes a more effective data augmentation scheme based on real-world image degradation process.
- Score: 13.334500258498798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks have achieved exceptional results on
multiple detection and recognition tasks. However, the performance of such
detectors are often evaluated in public benchmarks under constrained and
non-realistic situations. The impact of conventional distortions and processing
operations found in imaging workflows such as compression, noise, and
enhancement are not sufficiently studied. Currently, only a few researches have
been done to improve the detector robustness to unseen perturbations. This
paper proposes a more effective data augmentation scheme based on real-world
image degradation process. This novel technique is deployed for deepfake
detection tasks and has been evaluated by a more realistic assessment
framework. Extensive experiments show that the proposed data augmentation
scheme improves generalization ability to unpredictable data distortions and
unseen datasets.
Related papers
- CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
arXiv Detail & Related papers (2023-07-27T17:22:41Z) - Assessment Framework for Deepfake Detection in Real-world Situations [13.334500258498798]
Deep learning-based deepfake detection methods have exhibited remarkable performance.
The impact of various image and video processing operations and typical workflow distortions on detection accuracy has not been systematically measured.
A more reliable assessment framework is proposed to evaluate the performance of learning-based deepfake detectors in more realistic settings.
arXiv Detail & Related papers (2023-04-12T19:09:22Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - A Novel Framework for Assessment of Learning-based Detectors in
Realistic Conditions with Application to Deepfake Detection [11.287342793740876]
This paper proposes a rigorous framework to assess performance of learning-based detectors in more realistic situations.
Inspired by the assessment results, a data augmentation strategy based on natural image degradation process is designed.
arXiv Detail & Related papers (2022-03-22T15:03:56Z) - Impact of Benign Modifications on Discriminative Performance of Deepfake
Detectors [11.881119750753648]
A large number of deepfake detectors have been proposed recently in order to identify such content.
Deepfakes are increasingly popular in both good faith applications such as in entertainment and maliciously intended manipulations such as in image and video forgery.
This paper proposes a more rigorous and systematic framework to assess the performance of deepfake detectors in more realistic situations.
arXiv Detail & Related papers (2021-11-14T22:50:39Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.