Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems
- URL: http://arxiv.org/abs/2203.11812v1
- Date: Tue, 22 Mar 2022 15:22:31 GMT
- Title: Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems
- Authors: Luca Furieri, Clara Luc\'ia Galimberti, Giancarlo Ferrari-Trecate
- Abstract summary: We propose a Neural SLS (Neur-SLS) approach guaranteeing closed-loop stability during and after parameter optimization.
We exploit recent Deep Neural Network (DNN) models based on Recurrent Equilibrium Networks (RENs) to learn over a rich class of nonlinear stable operators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of designing stabilizing control policies for
nonlinear systems in discrete-time, while minimizing an arbitrary cost
function. When the system is linear and the cost is convex, the System Level
Synthesis (SLS) approach offers an exact solution based on convex programming.
Beyond this case, a globally optimal solution cannot be found in a tractable
way, in general. In this paper, we develop a parametrization of all and only
the control policies stabilizing a given time-varying nonlinear system in terms
of the combined effect of 1) a strongly stabilizing base controller and 2) a
stable SLS operator to be freely designed. Based on this result, we propose a
Neural SLS (Neur-SLS) approach guaranteeing closed-loop stability during and
after parameter optimization, without requiring any constraints to be
satisfied. We exploit recent Deep Neural Network (DNN) models based on
Recurrent Equilibrium Networks (RENs) to learn over a rich class of nonlinear
stable operators, and demonstrate the effectiveness of the proposed approach in
numerical examples.
Related papers
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
Neural Networks (NNs) can be leveraged to parametrize control policies that yield good performance.
NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system.
To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies.
The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots.
arXiv Detail & Related papers (2024-11-15T10:44:29Z) - Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
We tackle the performance-boosting problem with closed-loop stability guarantees.
Our methods enable learning over arbitrarily deep neural network classes of performance-boosting controllers for stable nonlinear systems.
arXiv Detail & Related papers (2024-05-01T21:11:29Z) - Learning Over Contracting and Lipschitz Closed-Loops for
Partially-Observed Nonlinear Systems (Extended Version) [1.2430809884830318]
This paper presents a policy parameterization for learning-based control on nonlinear, partially-observed dynamical systems.
We prove that the resulting Youla-REN parameterization automatically satisfies stability (contraction) and user-tunable robustness (Lipschitz) conditions.
We find that the Youla-REN performs similarly to existing learning-based and optimal control methods while also ensuring stability and exhibiting improved robustness to adversarial disturbances.
arXiv Detail & Related papers (2023-04-12T23:55:56Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
We propose a parameterization of nonlinear output feedback controllers for linear dynamical systems.
Our approach guarantees the closed-loop stability of partially observable linear dynamical systems without requiring any constraints to be satisfied.
arXiv Detail & Related papers (2021-12-08T10:43:47Z) - Youla-REN: Learning Nonlinear Feedback Policies with Robust Stability
Guarantees [5.71097144710995]
This paper presents a parameterization of nonlinear controllers for uncertain systems building on a recently developed neural network architecture.
The proposed framework has "built-in" guarantees of stability, i.e., all policies in the search space result in a contracting (globally exponentially stable) closed-loop system.
arXiv Detail & Related papers (2021-12-02T13:52:37Z) - On the Stability of Nonlinear Receding Horizon Control: A Geometric
Perspective [72.7951562665449]
widespread adoption of nonlinear Receding Control (RHC) strategies by industry has to more than 30 years.
This paper takes the first step towards understanding the role of global geometry in the role of global-based control.
arXiv Detail & Related papers (2021-03-27T22:59:37Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.