論文の概要: Nanoscale magnetism probed in a matter-wave interferometer
- arxiv url: http://arxiv.org/abs/2203.11866v1
- Date: Tue, 22 Mar 2022 16:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 02:48:43.682998
- Title: Nanoscale magnetism probed in a matter-wave interferometer
- Title(参考訳): 物質波干渉計で探るナノスケール磁気
- Authors: Yaakov Y. Fein, Sebastian Pedalino, Armin Shayeghi, Filip Kia{\l}ka,
Stefan Gerlich, Markus Arndt
- Abstract要約: アルカリ原子、有機ラジカル、フラーレンを同じ装置で研究し、ボア磁力から核磁気力以下の磁気モーメントを観測した。
有機ラジカルの超音速ビームの磁化の証拠が見出され、特に、熱C$_60$ビームの強い磁気応答が回転磁気モーメントの高温原子様偏向と一致していることが顕著である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore a wide range of fundamental magnetic phenomena by measuring the
dephasing of matter-wave interference fringes upon application of a variable
magnetic gradient. The versatility of our interferometric Stern-Gerlach
technique enables us to study alkali atoms, organic radicals and fullerenes in
the same device, with magnetic moments ranging from a Bohr magneton to less
than a nuclear magneton. We find evidence for magnetization of a supersonic
beam of organic radicals and, most notably, observe a strong magnetic response
of a thermal C$_{60}$ beam consistent with high-temperature atom-like
deflection of rotational magnetic moments.
- Abstract(参考訳): 可変磁場勾配の適用による物質-波干渉縞の減衰を測定することにより, 幅広い基本磁気現象を探索する。
インターフェロメトリStern-Gerlach法の汎用性により、同じデバイスでアルカリ原子、有機ラジカル、フラーレンを研究でき、磁気モーメントはボーアマグネトロンから核マグネトロンより小さい。
有機ラジカルの超音速ビームの磁化の証拠が発見され、特に、熱C$_{60}$ビームの強い磁気応答が回転磁気モーメントの高温原子様偏向と一致していることが顕著である。
関連論文リスト
- Unveiling Exotic Magnetic Phases in Fibonacci Quasicrystalline Stacking
of Ferromagnetic Layers through Machine Learning [0.0]
本稿では,ファンデルワールス磁性体を用いた強磁性層のフィボナッチ準結晶積層について検討した。
この準結晶系における幾何学的フラストレーションと磁気秩序の複雑な関係を示す磁性ヘテロ構造のモデルを構築した。
我々は機械学習アプローチを採用し、このシステムの複雑な磁気挙動を明らかにする強力なツールであることが証明されている。
論文 参考訳(メタデータ) (2023-07-29T19:03:12Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
我々は,高感度・サブスケール空間分解能を有するメガバール圧力のその場磁気検出技術を開発した。
強強強磁性体(アルファ-Fe3O4)から弱い強磁性体(ベータ-Fe3O4)、最後に非磁性体(ガンマ-Fe3O4)への大気圧域におけるFe3O4のマクロ磁気遷移を観察する。
提案手法は磁気系のスピン軌道結合と磁気-超伝導の競合について検討することができる。
論文 参考訳(メタデータ) (2023-06-13T15:19:22Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
キャビティ光子と強磁性スピンの励起は ハイブリッドアーキテクチャで情報交換できる
速度向上は通常、電磁キャビティの幾何学を最適化することで達成される。
強磁性体の基本周波数を設定することにより、強磁性体の幾何学も重要な役割を果たすことを示す。
論文 参考訳(メタデータ) (2022-07-08T11:28:31Z) - Colliding-probe bi-atomic magnetometers via energy circulation: Breaking
symmetry-enforced magneto-optical rotation blockade [0.0]
単一プローブを用いた磁界センサ方式における伝搬成長遮断効果を示す。
実験と理論の両方で、このNMORE遮断を解除する衝突型プローブバイ原子磁気センサが示されています。
この新しい技術は光子ゲートやスイッチング操作に幅広い応用をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-02-25T15:45:31Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
標準量子限界における熱力学ノイズと機械的検出ノイズを考慮した最適磁場分解能の評価を行った。
近年の文献で指摘されているエネルギー分解限界(ERL, Energy Resolution Limit)は, 桁違いに超えることがある。
論文 参考訳(メタデータ) (2021-04-29T15:44:12Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
マイクロ波キャビティに結合した磁気分子系は平衡超ラジカル相転移を行う。
結合の効果は、量子イジングモデルにおける真空誘起強磁性秩序によって最初に示される。
透過実験は遷移を解くために示され、磁気の量子電気力学的制御を測定する。
論文 参考訳(メタデータ) (2020-11-07T11:18:24Z) - Quantum Size Effects in the Magnetic Susceptibility of a Metallic
Nanoparticle [0.0]
球状金属ナノ粒子の磁気応答における量子サイズ効果を理論的に研究する。
静磁場下でのナノ粒子の誘導磁気モーメントと磁化率を計算した。
超伝導量子干渉デバイスとの結合に基づく量子サイズ効果を実験的に検出する2つの方法を提案する。
論文 参考訳(メタデータ) (2020-10-27T15:28:25Z) - Realization of a Bosonic Antiferromagnet [6.2669932229958345]
極低温ボソンを用いた1次元ハイゼンベルク反強磁性体を作製する。
凝縮物質系と比較して、光学格子中の超低温ガスは顕微鏡で設計・測定することができる。
論文 参考訳(メタデータ) (2020-09-03T03:08:04Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
量子物理学と一般相対性理論の交点における実験が提案されている。
時空における固有スピンの挙動は実験的にオープンな問題である。
測定は、地球を周回する軌道上でmmスケールの強磁性ジャイロスコープを使用することで可能である。
論文 参考訳(メタデータ) (2020-06-16T17:18:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
ナノスケールでのスピンの電気的制御は、スピントロニクスのアーキテクチャ上の利点を提供する。
分子スピン材料における電場(E-場)感度の最近の実証が注目されている。
これまでに報告された電子場感度はかなり弱く、より強いスピン電結合を持つ分子をどうやって設計するかという問題を引き起こした。
論文 参考訳(メタデータ) (2020-05-03T09:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。