CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training
- URL: http://arxiv.org/abs/2203.11947v1
- Date: Tue, 22 Mar 2022 16:13:27 GMT
- Title: CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training
- Authors: Haitian Zheng, Zhe Lin, Jingwan Lu, Scott Cohen, Eli Shechtman,
Connelly Barnes, Jianming Zhang, Ning Xu, Sohrab Amirghodsi, and Jiebo Luo
- Abstract summary: We propose cascaded modulation GAN (CM-GAN) to generate plausible image structures when dealing with large holes in complex images.
In each decoder block, global modulation is first applied to perform coarse semantic-aware synthesis structure, then spatial modulation is applied on the output of global modulation to further adjust the feature map in a spatially adaptive fashion.
In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios.
- Score: 112.96224800952724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent image inpainting methods have made great progress but often struggle
to generate plausible image structures when dealing with large holes in complex
images. This is partially due to the lack of effective network structures that
can capture both the long-range dependency and high-level semantics of an
image. To address these problems, we propose cascaded modulation GAN (CM-GAN),
a new network design consisting of an encoder with Fourier convolution blocks
that extract multi-scale feature representations from the input image with
holes and a StyleGAN-like decoder with a novel cascaded global-spatial
modulation block at each scale level. In each decoder block, global modulation
is first applied to perform coarse semantic-aware structure synthesis, then
spatial modulation is applied on the output of global modulation to further
adjust the feature map in a spatially adaptive fashion. In addition, we design
an object-aware training scheme to prevent the network from hallucinating new
objects inside holes, fulfilling the needs of object removal tasks in
real-world scenarios. Extensive experiments are conducted to show that our
method significantly outperforms existing methods in both quantitative and
qualitative evaluation.
Related papers
- Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
We propose in-domain GAN inversion, which consists of a domain-guided domain-regularized and a encoder to regularize the inverted code in the native latent space of the pre-trained GAN model.
We make comprehensive analyses on the effects of the encoder structure, the starting inversion point, as well as the inversion parameter space, and observe the trade-off between the reconstruction quality and the editing property.
arXiv Detail & Related papers (2023-09-25T08:42:06Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics.
We develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model.
We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks.
arXiv Detail & Related papers (2022-11-19T07:50:34Z) - Unsupervised Structure-Consistent Image-to-Image Translation [6.282068591820945]
The Swapping Autoencoder achieved state-of-the-art performance in deep image manipulation and image-to-image translation.
We improve this work by introducing a simple yet effective auxiliary module based on gradient reversal layers.
The auxiliary module's loss forces the generator to learn to reconstruct an image with an all-zero texture code.
arXiv Detail & Related papers (2022-08-24T13:47:15Z) - Adaptive Single Image Deblurring [43.02281823557039]
We propose an efficient pixel adaptive and feature attentive design for handling large blur variations within and across different images.
We also propose an effective content-aware global-local filtering module that significantly improves the performance.
arXiv Detail & Related papers (2022-01-01T10:10:19Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Toward a Controllable Disentanglement Network [22.968760397814993]
This paper addresses two crucial problems of learning disentangled image representations, namely controlling the degree of disentanglement during image editing, and balancing the disentanglement strength and the reconstruction quality.
By exploring the real-valued space of the soft target representation, we are able to synthesize novel images with the designated properties.
arXiv Detail & Related papers (2020-01-22T16:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.