A Unified Substrate for Body-Brain Co-evolution
- URL: http://arxiv.org/abs/2203.12066v1
- Date: Tue, 22 Mar 2022 21:57:59 GMT
- Title: A Unified Substrate for Body-Brain Co-evolution
- Authors: Sidney Pontes-Filho, Kathryn Walker, Elias Najarro, Stefano Nichele
and Sebastian Risi
- Abstract summary: We introduce a single neural cellular automaton (NCA) as a genome for modular robotic agents.
NCA guides the growth of a robot and the cellular activity which controls the robot during deployment.
We introduce three benchmark environments, which test the ability of the approach to grow different robot morphologies.
- Score: 8.57218255651212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A successful development of a complex multicellular organism took millions of
years of evolution. The genome of such a multicellular organism guides the
development of its body from a single cell, including its control system. Our
goal is to imitate this natural process using a single neural cellular
automaton (NCA) as a genome for modular robotic agents. In the introduced
approach, called Neural Cellular Robot Substrate (NCRS), a single NCA guides
the growth of a robot and the cellular activity which controls the robot during
deployment. We also introduce three benchmark environments, which test the
ability of the approach to grow different robot morphologies. We evolve the
NCRS with covariance matrix adaptation evolution strategy (CMA-ES), and
covariance matrix adaptation MAP-Elites (CMA-ME) for quality diversity and
observe that CMA-ME generates more diverse robot morphologies with higher
fitness scores. While the NCRS is able to solve the easier tasks in the
benchmark, the success rate reduces when the difficulty of the task increases.
We discuss directions for future work that may facilitate the use of the NCRS
approach for more complex domains.
Related papers
- Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
This paper introduces an astrocyte regulated Spiking Neural Network (SNN)-based CPG for learning locomotion gait through Reward-Modulated STDP for quadruped robots.
The SNN-based CPG is simulated on a multi-object physics simulation platform resulting in the emergence of a trotting gait while running the robot on flat ground.
$23.3times$ computational power savings is observed in comparison to a state-of-the-art reinforcement learning based robot control algorithm.
arXiv Detail & Related papers (2023-12-25T20:33:16Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - CycleIK: Neuro-inspired Inverse Kinematics [12.29529468290859]
CycleIK is a neuro-robotic approach that wraps two novel neuro-inspired methods for the inverse kinematics (IK) task.
We show how embedding these into a hybrid neuro-genetic IK pipeline allows for further optimization.
arXiv Detail & Related papers (2023-07-21T13:03:27Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control.
Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies.
We propose a hierarchical architecture to better model this dependency via contextual modulation.
arXiv Detail & Related papers (2023-02-22T00:04:12Z) - Co-evolving morphology and control of soft robots using a single genome [0.0]
We present a new method to co-evolve morphology and control of robots.
Our method derives both the "brain" and the "body" of an agent from a single genome and develops them together.
We evaluate the presented methods on four tasks and observe that even if the search space was larger, having a single genome makes the evolution process converge faster.
arXiv Detail & Related papers (2022-12-22T07:34:31Z) - Empowered Neural Cellular Automata [0.0]
empowerment measures the amount of control an agent exerts on its environment via its sensorimotor system.
We show that the addition of empowerment as a secondary objective in the evolution of a neural cellular automaton results in higher fitness compared to evolving for morphogenesis alone.
arXiv Detail & Related papers (2022-04-27T19:37:26Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
We use neural cellular automata to control a cart-pole agent.
We trained the model using deep-Q learning, where the states of the output cells were used as the Q-value estimates to be optimized.
arXiv Detail & Related papers (2021-06-29T10:49:42Z) - An Astrocyte-Modulated Neuromorphic Central Pattern Generator for
Hexapod Robot Locomotion on Intel's Loihi [0.0]
Locomotion is a crucial challenge for legged robots that is addressed "effortlessly" by biological networks abundant in nature, named central pattern generators (CPG)
Here, we propose a brain-morphic CPG controler based on a comprehensive spiking neural-astrocytic network that generates two gait patterns for a hexapod robot.
Our results pave the way for scaling this and other approaches towards Loihi-controlled locomotion in autonomous mobile robots.
arXiv Detail & Related papers (2020-06-08T17:35:48Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
We present a new meta-learning method that allows robots to quickly adapt to changes in dynamics.
Our method significantly improves adaptation to changes in dynamics in high noise settings.
We validate our approach on a quadruped robot that learns to walk while subject to changes in dynamics.
arXiv Detail & Related papers (2020-03-02T22:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.