Empowered Neural Cellular Automata
- URL: http://arxiv.org/abs/2205.06771v2
- Date: Mon, 29 Jul 2024 16:28:13 GMT
- Title: Empowered Neural Cellular Automata
- Authors: Caitlin Grasso, Josh Bongard,
- Abstract summary: empowerment measures the amount of control an agent exerts on its environment via its sensorimotor system.
We show that the addition of empowerment as a secondary objective in the evolution of a neural cellular automaton results in higher fitness compared to evolving for morphogenesis alone.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Information-theoretic fitness functions are becoming increasingly popular to produce generally useful, task-independent behaviors. One such universal function, dubbed empowerment, measures the amount of control an agent exerts on its environment via its sensorimotor system. Specifically, empowerment attempts to maximize the mutual information between an agent's actions and its received sensor states at a later point in time. Traditionally, empowerment has been applied to a conventional sensorimotor apparatus, such as a robot. Here, we expand the approach to a distributed, multi-agent sensorimotor system embodied by a neural cellular automaton (NCA). We show that the addition of empowerment as a secondary objective in the evolution of NCA to perform the task of morphogenesis, growing and maintaining a pre-specified shape, results in higher fitness compared to evolving for morphogenesis alone. Results suggest there may be a synergistic relationship between morphogenesis and empowerment. That is, indirectly selecting for coordination between neighboring cells over the duration of development is beneficial to the developmental process itself. Such a finding may have applications in developmental biology by providing potential mechanisms of communication between cells during growth from a single cell to a multicellular, target morphology. Source code for the experiments in this paper can be found at: \url{https://github.com/caitlingrasso/empowered-nca}.
Related papers
- Engineering morphogenesis of cell clusters with differentiable programming [2.0690546196799042]
We discover local interaction rules and genetic networks that yield emergent, systems-level characteristics in a model of development.
We show that one can simultaneously learn parameters governing the cell interactions and the genetic network for complex developmental scenarios.
arXiv Detail & Related papers (2024-07-08T18:05:11Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Astrocytes as a mechanism for meta-plasticity and contextually-guided
network function [2.66269503676104]
Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell.
Astrocytes may play a more direct and active role in brain function and neural computation.
arXiv Detail & Related papers (2023-11-06T20:31:01Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Selection for short-term empowerment accelerates the evolution of homeostatic neural cellular automata [0.0]
We explore how the time scale at which empowerment operates impacts its efficacy as an auxiliary objective to accelerate the discovery of homeostatic NCAs.
We show that shorter time delays result in marked improvements over empowerment with longer delays, when compared to evolutionary selection only for homeostasis.
We find that short-term empowered NCA are more stable and are capable of generalizing better to unseen homeostatic challenges.
arXiv Detail & Related papers (2023-05-24T15:01:30Z) - Real-time Evolution of Multicellularity with Artificial Gene Regulation [0.0]
This paper presents a real-time simulation involving ''protozoan-like'' cells that evolve by natural selection in a physical 2D ecosystem.
arXiv Detail & Related papers (2023-05-20T17:39:07Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
We argue that the original Growing NCA model has an important limitation: anisotropy of the learned update rule.
We demonstrate that cell systems can be trained to grow accurate asymmetrical patterns through either of two methods.
arXiv Detail & Related papers (2022-05-03T11:34:22Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
We use neural cellular automata to control a cart-pole agent.
We trained the model using deep-Q learning, where the states of the output cells were used as the Q-value estimates to be optimized.
arXiv Detail & Related papers (2021-06-29T10:49:42Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.