Self-supervised Learning of Adversarial Example: Towards Good
Generalizations for Deepfake Detection
- URL: http://arxiv.org/abs/2203.12208v2
- Date: Fri, 25 Mar 2022 16:00:07 GMT
- Title: Self-supervised Learning of Adversarial Example: Towards Good
Generalizations for Deepfake Detection
- Authors: Liang Chen, Yong Zhang, Yibing Song, Lingqiao Liu, and Jue Wang
- Abstract summary: This work addresses the generalizable deepfake detection from a simple principle.
We propose to enrich the "diversity" of forgeries by synthesizing augmented forgeries with a pool of forgery configurations.
We also propose to use the adversarial training strategy to dynamically synthesize the most challenging forgeries to the current model.
- Score: 41.27496491339225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies in deepfake detection have yielded promising results when the
training and testing face forgeries are from the same dataset. However, the
problem remains challenging when one tries to generalize the detector to
forgeries created by unseen methods in the training dataset. This work
addresses the generalizable deepfake detection from a simple principle: a
generalizable representation should be sensitive to diverse types of forgeries.
Following this principle, we propose to enrich the "diversity" of forgeries by
synthesizing augmented forgeries with a pool of forgery configurations and
strengthen the "sensitivity" to the forgeries by enforcing the model to predict
the forgery configurations. To effectively explore the large forgery
augmentation space, we further propose to use the adversarial training strategy
to dynamically synthesize the most challenging forgeries to the current model.
Through extensive experiments, we show that the proposed strategies are
surprisingly effective (see Figure 1), and they could achieve superior
performance than the current state-of-the-art methods. Code is available at
\url{https://github.com/liangchen527/SLADD}.
Related papers
- Fake It till You Make It: Curricular Dynamic Forgery Augmentations towards General Deepfake Detection [15.857961926916465]
We present a novel general deepfake detection method, called textbfCurricular textbfDynamic textbfForgery textbfAugmentation (CDFA)
CDFA jointly trains a deepfake detector with a forgery augmentation policy network.
We show that CDFA can significantly improve both cross-datasets and cross-manipulations performances of various naive deepfake detectors.
arXiv Detail & Related papers (2024-09-22T13:51:22Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - READ: Improving Relation Extraction from an ADversarial Perspective [33.44949503459933]
We propose an adversarial training method specifically designed for relation extraction (RE)
Our approach introduces both sequence- and token-level perturbations to the sample and uses a separate perturbation vocabulary to improve the search for entity and context perturbations.
arXiv Detail & Related papers (2024-04-02T16:42:44Z) - Diffusion Deepfake [41.59597965760673]
Recent progress in generative AI, primarily through diffusion models, presents significant challenges for real-world deepfake detection.
The increased realism in image details, diverse content, and widespread accessibility to the general public complicates the identification of these sophisticated deepfakes.
This paper introduces two extensive deepfake datasets generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2024-04-02T02:17:50Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.