READ: Improving Relation Extraction from an ADversarial Perspective
- URL: http://arxiv.org/abs/2404.02931v1
- Date: Tue, 2 Apr 2024 16:42:44 GMT
- Title: READ: Improving Relation Extraction from an ADversarial Perspective
- Authors: Dawei Li, William Hogan, Jingbo Shang,
- Abstract summary: We propose an adversarial training method specifically designed for relation extraction (RE)
Our approach introduces both sequence- and token-level perturbations to the sample and uses a separate perturbation vocabulary to improve the search for entity and context perturbations.
- Score: 33.44949503459933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent works in relation extraction (RE) have achieved promising benchmark accuracy; however, our adversarial attack experiments show that these works excessively rely on entities, making their generalization capability questionable. To address this issue, we propose an adversarial training method specifically designed for RE. Our approach introduces both sequence- and token-level perturbations to the sample and uses a separate perturbation vocabulary to improve the search for entity and context perturbations. Furthermore, we introduce a probabilistic strategy for leaving clean tokens in the context during adversarial training. This strategy enables a larger attack budget for entities and coaxes the model to leverage relational patterns embedded in the context. Extensive experiments show that compared to various adversarial training methods, our method significantly improves both the accuracy and robustness of the model. Additionally, experiments on different data availability settings highlight the effectiveness of our method in low-resource scenarios. We also perform in-depth analyses of our proposed method and provide further hints. We will release our code at https://github.com/David-Li0406/READ.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
It is not possible to train networks that are accurate in all scenarios.
Deep learning methods sample the model parameter space to estimate uncertainty.
These parameters are often subject to the same vulnerabilities, which can be exploited by adversarial attacks.
We propose a novel ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse complementary features.
arXiv Detail & Related papers (2022-07-19T02:36:36Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Holistic Deep Learning [3.718942345103135]
This paper presents a novel holistic deep learning framework that addresses the challenges of vulnerability to input perturbations, overparametrization, and performance instability.
The proposed framework holistically improves accuracy, robustness, sparsity, and stability over standard deep learning models.
arXiv Detail & Related papers (2021-10-29T14:46:32Z) - Bridge the Gap Between CV and NLP! A Gradient-based Textual Adversarial
Attack Framework [17.17479625646699]
We propose a unified framework to craft textual adversarial samples.
In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD)
arXiv Detail & Related papers (2021-10-28T17:31:51Z) - Improving Gradient-based Adversarial Training for Text Classification by
Contrastive Learning and Auto-Encoder [18.375585982984845]
We focus on enhancing the model's ability to defend gradient-based adversarial attack during the model's training process.
We propose two novel adversarial training approaches: CARL and RAR.
Experiments show that the proposed two approaches outperform strong baselines on various text classification datasets.
arXiv Detail & Related papers (2021-09-14T09:08:58Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Adversarial Augmentation Policy Search for Domain and Cross-Lingual
Generalization in Reading Comprehension [96.62963688510035]
Reading comprehension models often overfit to nuances of training datasets and fail at adversarial evaluation.
We present several effective adversaries and automated data augmentation policy search methods with the goal of making reading comprehension models more robust to adversarial evaluation.
arXiv Detail & Related papers (2020-04-13T17:20:08Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.