論文の概要: U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search
- arxiv url: http://arxiv.org/abs/2203.12412v1
- Date: Wed, 23 Mar 2022 13:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-24 21:49:59.366489
- Title: U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search
- Title(参考訳): u-boost nas: 利用促進型微分可能ニューラルネットワーク検索
- Authors: Ahmet Caner Y\"uz\"ug\"uler, Nikolaos Dimitriadis, Pascal Frossard
- Abstract要約: ターゲットプラットフォームにおけるリソース利用の最適化は、DNN推論時に高いパフォーマンスを達成するための鍵となる。
本稿では,タスクの正確性や推論遅延を最適化するだけでなく,資源利用のためのハードウェア対応NASフレームワークを提案する。
我々は,従来のハードウェア対応NAS法と比較して,DNN推論の2.8~4倍の高速化を実現している。
- 参考スコア(独自算出の注目度): 50.33956216274694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing resource utilization in target platforms is key to achieving high
performance during DNN inference. While optimizations have been proposed for
inference latency, memory footprint, and energy consumption, prior
hardware-aware neural architecture search (NAS) methods have omitted resource
utilization, preventing DNNs to take full advantage of the target inference
platforms. Modeling resource utilization efficiently and accurately is
challenging, especially for widely-used array-based inference accelerators such
as Google TPU. In this work, we propose a novel hardware-aware NAS framework
that does not only optimize for task accuracy and inference latency, but also
for resource utilization. We also propose and validate a new computational
model for resource utilization in inference accelerators. By using the proposed
NAS framework and the proposed resource utilization model, we achieve 2.8 - 4x
speedup for DNN inference compared to prior hardware-aware NAS methods while
attaining similar or improved accuracy in image classification on CIFAR-10 and
Imagenet-100 datasets.
- Abstract(参考訳): ターゲットプラットフォームにおけるリソース利用の最適化は、DNN推論時に高いパフォーマンスを達成するための鍵となる。
推論レイテンシ、メモリフットプリント、エネルギー消費の最適化が提案されているが、従来のハードウェア対応ニューラルアーキテクチャサーチ(NAS)手法ではリソース利用を省略しており、DNNがターゲットの推論プラットフォームを完全に活用できない。
特に、Google TPUのような広く使われている配列ベースの推論アクセラレータでは、リソース利用を効率的に正確にモデル化することは困難である。
本研究では,タスクの正確性や推論遅延を最適化するだけでなく,資源利用のためのハードウェア対応NASフレームワークを提案する。
また,推論アクセラレータにおける資源利用のための新しい計算モデルを提案し,検証する。
提案するnasフレームワークと提案するリソース利用モデルを用いて,dnn推定の2.8倍から4倍の高速化を実現し,cifar-10およびimagenet-100データセットにおける画像分類精度を向上させた。
関連論文リスト
- DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
本研究では拡散モデルに基づく新しい条件付きニューラルネットワーク生成(NAG)フレームワークDiffusionNAGを提案する。
具体的には、ニューラルネットワークを有向グラフとみなし、それらを生成するためのグラフ拡散モデルを提案する。
本研究では,2つの予測型NAS(Transferable NAS)とベイズ最適化(BO)に基づくNAS(Bayesian Optimization)の2つのシナリオにおいて,DiffusionNAGの有効性を検証する。
BOベースのアルゴリズムに統合されると、DiffusionNAGは既存のBOベースのNASアプローチ、特にImageNet 1Kデータセット上の大規模なMobileNetV3検索スペースよりも優れている。
論文 参考訳(メタデータ) (2023-05-26T13:58:18Z) - Data Aware Neural Architecture Search [0.12891210250935145]
機械学習では、NNアーキテクチャを評価するのに1つのメトリクスだけでは不十分である。
資源制約システムのためのNASに関する最近の研究は、複数のメトリクスを最適化するための様々なアプローチについて研究している。
このようなシステムに“Data Aware NAS”と命名し,そのメリットを示す実験的な証拠を提供する。
論文 参考訳(メタデータ) (2023-04-04T14:20:36Z) - Lightweight Neural Architecture Search for Temporal Convolutional
Networks at the Edge [21.72253397805102]
この研究は特に、時系列処理のための畳み込みモデルであるTCN(Temporal Convolutional Networks)に焦点を当てている。
我々は,TNの最も特異なアーキテクチャパラメータの最適化を明示的に目標とする最初のNASツールを提案する。
提案したNASは,音声および生体信号を含む4つの実世界のエッジ関連タスクでテストする。
論文 参考訳(メタデータ) (2023-01-24T19:47:40Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - FLASH: Fast Neural Architecture Search with Hardware Optimization [7.263481020106725]
ニューラルアーキテクチャサーチ(NAS)は、効率的かつ高性能なディープニューラルネットワーク(DNN)を設計するための有望な手法である
本稿では,実ハードウェアプラットフォーム上でのDNNの精度と性能を協調的に最適化する,非常に高速なNAS手法であるFLASHを提案する。
論文 参考訳(メタデータ) (2021-08-01T23:46:48Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
バイナリ化されたニューラルネットワークサーチ(BNAS)は、エッジコンピューティング用の組み込みデバイスにおいて、膨大な計算コストを削減するために、極めて圧縮されたモデルを生成する。
9,6.53%対9,7.22%の精度はCIFAR-10データセットで達成されるが、かなり圧縮されたモデルで、最先端のPC-DARTSよりも40%速い検索が可能である。
論文 参考訳(メタデータ) (2020-09-08T15:51:23Z) - NASCaps: A Framework for Neural Architecture Search to Optimize the
Accuracy and Hardware Efficiency of Convolutional Capsule Networks [10.946374356026679]
我々は,異なるタイプのディープニューラルネットワーク(DNN)のハードウェア対応NASの自動フレームワークであるNASCapsを提案する。
多目的遺伝的アルゴリズム(NSGA-IIアルゴリズム)の展開の有効性について検討する。
我々のフレームワークは、NASフローの特別なカプセル層と動的ルーティングをモデル化し、サポートする最初のフレームワークです。
論文 参考訳(メタデータ) (2020-08-19T14:29:36Z) - BRP-NAS: Prediction-based NAS using GCNs [21.765796576990137]
BRP-NASは、グラフ畳み込みネットワーク(GCN)に基づく正確な性能予測によって実現された効率的なハードウェア対応NASである
提案手法はNAS-Bench-101とNAS-Bench-201の先行手法よりも優れていることを示す。
また、幅広いデバイスで動作するNAS-Bench-201モデルのレイテンシデータセットであるLatBenchもリリースしました。
論文 参考訳(メタデータ) (2020-07-16T21:58:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。