論文の概要: What is Software Quality for AI Engineers? Towards a Thinning of the Fog
- arxiv url: http://arxiv.org/abs/2203.12697v1
- Date: Wed, 23 Mar 2022 19:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-26 02:38:15.412731
- Title: What is Software Quality for AI Engineers? Towards a Thinning of the Fog
- Title(参考訳): AIエンジニアのためのソフトウェア品質とは何か?
霧の薄化に向けて
- Authors: Valentina Golendukhina, Valentina Lenarduzzi, Michael Felderer
- Abstract要約: 本研究の目的は,AI/MLコンポーネントやコードの開発,統合,メンテナンスにおいて採用されるソフトウェア品質保証戦略を検討することである。
インタビューデータの質的分析により、AI/MLコンポーネントの開発における12の課題が明らかになった。
本研究の結果は,AI/MLコンポーネントのソフトウェア品質保証プロセスと技術に関する今後の研究を導くものである。
- 参考スコア(独自算出の注目度): 9.401273164668092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is often overseen that AI-enabled systems are also software systems and
therefore rely on software quality assurance (SQA). Thus, the goal of this
study is to investigate the software quality assurance strategies adopted
during the development, integration, and maintenance of AI/ML components and
code. We conducted semi-structured interviews with representatives of ten
Austrian SMEs that develop AI-enabled systems. A qualitative analysis of the
interview data identified 12 issues in the development of AI/ML components.
Furthermore, we identified when quality issues arise in AI/ML components and
how they are detected. The results of this study should guide future work on
software quality assurance processes and techniques for AI/ML components.
- Abstract(参考訳): AI対応システムはソフトウェアシステムであるため、ソフトウェア品質保証(SQA)に依存していることが多い。
そこで本研究の目的は,AI/MLコンポーネントやコードの開発,統合,メンテナンスにおいて採用されるソフトウェア品質保証戦略を検討することである。
ai対応システムを開発するオーストリアの中小企業10社の代表と半構造化インタビューを行った。
インタビューデータの質的分析により、AI/MLコンポーネントの開発における12の課題が明らかになった。
さらに,AI/MLコンポーネントの品質問題の発生状況と検出方法も確認した。
本研究の結果は,AI/MLコンポーネントのソフトウェア品質保証プロセスと技術に関する今後の研究を導くものである。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Design of a Quality Management System based on the EU Artificial Intelligence Act [0.0]
EU AI Actは、リスクの高いAIシステムのプロバイダとデプロイ者が品質管理システム(QMS)を確立することを義務付けている。
本稿では,マイクロサービス・ソフトウェア・アズ・ア・サービス・ウェブ・アプリケーションとしてのQMSの設計コンセプトとプロトタイプを紹介する。
論文 参考訳(メタデータ) (2024-08-08T12:14:02Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
本稿では,ChatGPTのようなソフトウェア技術者やAIシステムのパフォーマンスを,さまざまな評価指標で比較した実証的研究を行う。
この論文は、さまざまな評価基準を考慮して、ソフトウェアエンジニアとAIベースのソリューションの包括的な比較が、人間と機械のコラボレーションを促進する上で重要であることを示唆している。
論文 参考訳(メタデータ) (2023-05-19T17:25:54Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Software engineering for artificial intelligence and machine learning
software: A systematic literature review [6.681725960709127]
本研究は,AI/MLシステムの開発において,ソフトウェア工学がどのように応用されてきたかを検討することを目的とする。
プロフェッショナルが直面する主な課題は、テスト、AIソフトウェアの品質、データ管理といった分野だ。
論文 参考訳(メタデータ) (2020-11-07T11:06:28Z) - Opening the Software Engineering Toolbox for the Assessment of
Trustworthy AI [17.910325223647362]
我々は、信頼できるAIを評価するためのソフトウェアエンジニアリングとテストプラクティスの適用について論じる。
欧州委員会のAIハイレベル専門家グループによって定義された7つの重要な要件の関連付けを行います。
論文 参考訳(メタデータ) (2020-07-14T08:16:15Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Quality Management of Machine Learning Systems [0.0]
機械学習(ML)技術の大きな進歩により、人工知能(AI)は私たちの日常生活の一部になっています。
ビジネス/ミッションクリティカルなシステムでは、AIアプリケーションの信頼性と保守性に関する深刻な懸念が残っている。
本稿では,MLアプリケーションのための総合的な品質管理フレームワークの展望について述べる。
論文 参考訳(メタデータ) (2020-06-16T21:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。