Towards Backwards-Compatible Data with Confounded Domain Adaptation
- URL: http://arxiv.org/abs/2203.12720v3
- Date: Mon, 11 Nov 2024 02:49:50 GMT
- Title: Towards Backwards-Compatible Data with Confounded Domain Adaptation
- Authors: Calvin McCarter,
- Abstract summary: We seek to achieve general-purpose data backwards compatibility by modifying generalized label shift (GLS)
We present a novel framework for this problem, based on minimizing the expected divergence between the source and target conditional distributions.
We provide concrete implementations using the Gaussian reverse Kullback-Leibler divergence and the maximum mean discrepancy.
- Score: 0.0
- License:
- Abstract: Most current domain adaptation methods address either covariate shift or label shift, but are not applicable where they occur simultaneously and are confounded with each other. Domain adaptation approaches which do account for such confounding are designed to adapt covariates to optimally predict a particular label whose shift is confounded with covariate shift. In this paper, we instead seek to achieve general-purpose data backwards compatibility. This would allow the adapted covariates to be used for a variety of downstream problems, including on pre-existing prediction models and on data analytics tasks. To do this we consider a modification of generalized label shift (GLS), which we call confounded shift. We present a novel framework for this problem, based on minimizing the expected divergence between the source and target conditional distributions, conditioning on possible confounders. Within this framework, we provide concrete implementations using the Gaussian reverse Kullback-Leibler divergence and the maximum mean discrepancy. Finally, we demonstrate our approach on synthetic and real datasets.
Related papers
- Proxy Methods for Domain Adaptation [78.03254010884783]
proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables.
We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings.
arXiv Detail & Related papers (2024-03-12T09:32:41Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Adapting to Latent Subgroup Shifts via Concepts and Proxies [82.01141290360562]
We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain.
For continuous observations, we propose a latent variable model specific to the data generation process at hand.
arXiv Detail & Related papers (2022-12-21T18:30:22Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Importance Weighting Correction of Regularized Least-Squares for
Covariate and Target Shifts [0.0]
In many real world problems, the training data and test data have different distributions.
Importance weighting (IW) correction is a universal method for correcting the bias present in learning scenarios under dataset shift.
We show that IW correction works equally well for different dataset shift scenarios.
arXiv Detail & Related papers (2022-10-18T09:39:36Z) - Mapping conditional distributions for domain adaptation under
generalized target shift [0.0]
We consider the problem of unsupervised domain adaptation (UDA) between a source and a target domain under conditional and label shift a.k.a Generalized Target Shift (GeTarS)
Recent approaches learn domain-invariant representations, yet they have practical limitations and rely on strong assumptions that may not hold in practice.
In this paper, we explore a novel and general approach to align pretrained representations, which circumvents existing drawbacks.
arXiv Detail & Related papers (2021-10-26T14:25:07Z) - KL Guided Domain Adaptation [88.19298405363452]
Domain adaptation is an important problem and often needed for real-world applications.
A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain.
We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples.
arXiv Detail & Related papers (2021-06-14T22:24:23Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.