EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
- URL: http://arxiv.org/abs/2502.06684v2
- Date: Thu, 03 Jul 2025 08:22:46 GMT
- Title: EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
- Authors: Michael Arbel, David Salinas, Frank Hutter,
- Abstract summary: We design a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism.<n> Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
- Score: 55.214444066134114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
Related papers
- Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.<n>Yet their widespread adoption poses challenges regarding data attribution and interpretability.<n>We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification [0.0]
This paper examines the impact of balancing methods on predictive multiplicity using the Rashomon effect.
It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models.
arXiv Detail & Related papers (2024-03-22T13:08:22Z) - Robust Class-Conditional Distribution Alignment for Partial Domain
Adaptation [0.7892577704654171]
Unwanted samples from private source categories in the learning objective of a partial domain adaptation setup can lead to negative transfer and reduce classification performance.
Existing methods, such as re-weighting or aggregating target predictions, are vulnerable to this issue.
Our proposed approach seeks to overcome these limitations by delving deeper than just the first-order moments to derive distinct and compact categorical distributions.
arXiv Detail & Related papers (2023-10-18T15:49:46Z) - Natural Evolution Strategies as a Black Box Estimator for Stochastic
Variational Inference [0.0]
VAE allows unbiased and low variance estimation, restricting the types of models that can be created.
An alternative gradient estimator based on natural evolution strategies is proposed.
This estimator does not make assumptions about the kind of distributions used, allowing for the creation of models that would otherwise not have been possible under the VAE framework.
arXiv Detail & Related papers (2023-08-15T21:43:11Z) - Regularising for invariance to data augmentation improves supervised
learning [82.85692486314949]
We show that using multiple augmentations per input can improve generalisation.
We propose an explicit regulariser that encourages this invariance on the level of individual model predictions.
arXiv Detail & Related papers (2022-03-07T11:25:45Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints [16.48824312904122]
We develop a new framework for learning variational autoencoders and other deep generative models.
We show that these two contributions -- prediction constraints and consistency constraints -- lead to promising image classification performance.
arXiv Detail & Related papers (2020-12-12T04:18:50Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.