Learning Motion-Dependent Appearance for High-Fidelity Rendering of
Dynamic Humans from a Single Camera
- URL: http://arxiv.org/abs/2203.12780v1
- Date: Thu, 24 Mar 2022 00:22:03 GMT
- Title: Learning Motion-Dependent Appearance for High-Fidelity Rendering of
Dynamic Humans from a Single Camera
- Authors: Jae Shin Yoon, Duygu Ceylan, Tuanfeng Y. Wang, Jingwan Lu, Jimei Yang,
Zhixin Shu, Hyun Soo Park
- Abstract summary: A key challenge of learning the dynamics of the appearance lies in the requirement of a prohibitively large amount of observations.
We show that our method can generate a temporally coherent video of dynamic humans for unseen body poses and novel views given a single view video.
- Score: 49.357174195542854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Appearance of dressed humans undergoes a complex geometric transformation
induced not only by the static pose but also by its dynamics, i.e., there
exists a number of cloth geometric configurations given a pose depending on the
way it has moved. Such appearance modeling conditioned on motion has been
largely neglected in existing human rendering methods, resulting in rendering
of physically implausible motion. A key challenge of learning the dynamics of
the appearance lies in the requirement of a prohibitively large amount of
observations. In this paper, we present a compact motion representation by
enforcing equivariance -- a representation is expected to be transformed in the
way that the pose is transformed. We model an equivariant encoder that can
generate the generalizable representation from the spatial and temporal
derivatives of the 3D body surface. This learned representation is decoded by a
compositional multi-task decoder that renders high fidelity time-varying
appearance. Our experiments show that our method can generate a temporally
coherent video of dynamic humans for unseen body poses and novel views given a
single view video.
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - SurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering [45.51684124904457]
We propose a new 4D motion paradigm, SurMo, that models the temporal dynamics and human appearances in a unified framework.
Surface-based motion encoding that models 4D human motions with an efficient compact surface-based triplane.
Physical motion decoding that is designed to encourage physical motion learning.
4D appearance modeling that renders the motion triplanes into images by an efficient surface-conditioned decoding.
arXiv Detail & Related papers (2024-04-01T16:34:27Z) - Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence [47.16903508897047]
In this study, we elucidate that variations in human appearance depend not only on the current frame's pose condition but also on past pose states.
We introduce Dyco, a novel method utilizing the delta pose sequence representation for non-rigid deformations.
In addition, our inertia-aware 3D human method can unprecedentedly simulate appearance changes caused by inertia at different velocities.
arXiv Detail & Related papers (2024-03-28T06:05:14Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
We introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos.
A pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts.
Our method is able to render natural garment dynamics that deviate highly from the body and well to generalize to both unseen views and poses.
arXiv Detail & Related papers (2024-01-27T08:48:18Z) - Dynamic Appearance Modeling of Clothed 3D Human Avatars using a Single
Camera [8.308263758475938]
We introduce a method for high-quality modeling of clothed 3D human avatars using a video of a person with dynamic movements.
For explicit modeling, a neural network learns to generate point-wise shape residuals and appearance features of a 3D body model.
For implicit modeling, an implicit network combines the appearance and 3D motion features to decode high-fidelity clothed 3D human avatars.
arXiv Detail & Related papers (2023-12-28T06:04:39Z) - Animatable Virtual Humans: Learning pose-dependent human representations
in UV space for interactive performance synthesis [11.604386285817302]
We learn pose dependent appearance and geometry from highly accurate dynamic mesh sequences.
We encode both pose-dependent appearance and geometry in the consistent UV space of the SMPL model.
arXiv Detail & Related papers (2023-10-05T15:49:44Z) - Action2video: Generating Videos of Human 3D Actions [31.665831044217363]
We aim to tackle the interesting yet challenging problem of generating videos of diverse and natural human motions from prescribed action categories.
Key issue lies in the ability to synthesize multiple distinct motion sequences that are realistic in their visual appearances.
Action2motionally generates plausible 3D pose sequences of a prescribed action category, which are processed and rendered by motion2video to form 2D videos.
arXiv Detail & Related papers (2021-11-12T20:20:37Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z) - Real-time Deep Dynamic Characters [95.5592405831368]
We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance.
We use a novel graph convolutional network architecture to enable motion-dependent deformation learning of body and clothing.
We show that our model creates motion-dependent surface deformations, physically plausible dynamic clothing deformations, as well as video-realistic surface textures at a much higher level of detail than previous state of the art approaches.
arXiv Detail & Related papers (2021-05-04T23:28:55Z) - High-Fidelity Neural Human Motion Transfer from Monocular Video [71.75576402562247]
Video-based human motion transfer creates video animations of humans following a source motion.
We present a new framework which performs high-fidelity and temporally-consistent human motion transfer with natural pose-dependent non-rigid deformations.
In the experimental results, we significantly outperform the state-of-the-art in terms of video realism.
arXiv Detail & Related papers (2020-12-20T16:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.