Temporal Heterogeneity Improves Speed and Convergence in Genetic
Algorithms
- URL: http://arxiv.org/abs/2203.13194v1
- Date: Wed, 2 Feb 2022 22:48:56 GMT
- Title: Temporal Heterogeneity Improves Speed and Convergence in Genetic
Algorithms
- Authors: Yoshio Martinez, Katya Rodriguez, Carlos Gershenson
- Abstract summary: Genetic algorithms simulate natural selection to explore a parameter space in search of solutions for a broad variety of problems.
We set the crossover probability to be inversely proportional to the individual's fitness, i.e., better solutions change slower than those with a lower fitness.
We find that temporal heterogeneity consistently improves search without having prior knowledge of the parameter space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Genetic algorithms have been used in recent decades to solve a broad variety
of search problems. These algorithms simulate natural selection to explore a
parameter space in search of solutions for a broad variety of problems. In this
paper, we explore the effects of introducing temporal heterogeneity in genetic
algorithms. In particular, we set the crossover probability to be inversely
proportional to the individual's fitness, i.e., better solutions change slower
than those with a lower fitness. As case studies, we apply heterogeneity to
solve the $N$-Queens and Traveling Salesperson problems. We find that temporal
heterogeneity consistently improves search without having prior knowledge of
the parameter space.
Related papers
- Recombination vs Stochasticity: A Comparative Study on the Maximum Clique Problem [0.393259574660092]
The maximum clique problem (MCP) is a fundamental problem in graph theory and computational complexity.
Various meta-heuristics have been used to approximate the MCP, including genetic and memetic algorithms, ant colony algorithms, greedy algorithms, Tabu algorithms, and simulated annealing.
Our results indicate that Monte Carlo algorithms, which employ random searches to generate subgraphs, often surpass genetic algorithms in both speed and capability.
arXiv Detail & Related papers (2024-09-26T12:50:00Z) - Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to.
In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy.
arXiv Detail & Related papers (2024-02-01T09:18:34Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulate is an evolutionary optimization algorithm and software package for global optimization.
We provide an MPI-based implementation of our algorithm, which features variants of selection, mutation, crossover, and migration.
We find that Propulate is up to three orders of magnitude faster without sacrificing solution accuracy.
arXiv Detail & Related papers (2023-01-20T18:17:34Z) - The Influence of Local Search over Genetic Algorithms with Balanced
Representations [2.610470075814367]
We show that adding local search actually emphincreases the diversity among the individuals in the population.
We link these findings to some recent results on fitness landscape analysis for problems on Boolean functions.
arXiv Detail & Related papers (2022-06-22T10:59:26Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
Chemotherapy treatment for cancer is a complex optimisation problem with a large number of interacting variables and constraints.
We show that the more sophisticated algorithm would yield better performance on a complex problem like this.
We hypothesise that this is caused by the more sophisticated algorithm being impeded by the large number of interactions in the problem.
arXiv Detail & Related papers (2022-05-17T15:28:46Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
This paper characterizes and discusses devolutionary genetic algorithms and evaluates their performances in solving the minimum labeling Steiner tree (MLST) problem.
We define devolutionary algorithms as the process of reaching a feasible solution by devolving a population of super-optimal unfeasible solutions over time.
We show how classical evolutionary concepts, such as crossing, mutation and fitness can be adapted to aim at reaching an optimal or close-to-optimal solution.
arXiv Detail & Related papers (2020-04-18T13:27:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.