An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy
- URL: http://arxiv.org/abs/2205.08438v1
- Date: Tue, 17 May 2022 15:28:46 GMT
- Title: An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy
- Authors: Alexander Brownlee, Martin Pelikan, John McCall, and Andrei Petrovski
- Abstract summary: Chemotherapy treatment for cancer is a complex optimisation problem with a large number of interacting variables and constraints.
We show that the more sophisticated algorithm would yield better performance on a complex problem like this.
We hypothesise that this is caused by the more sophisticated algorithm being impeded by the large number of interactions in the problem.
- Score: 59.40521061783166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chemotherapy treatment for cancer is a complex optimisation problem with a
large number of interacting variables and constraints. A number of different
probabilistic algorithms have been applied to it with varying success. In this
paper we expand on this by applying two estimation of distribution algorithms
to the problem. One is UMDA, which uses a univariate probabilistic model
similar to previously applied EDAs. The other is hBOA, the first EDA using a
multivariate probabilistic model to be applied to the chemotherapy problem.
While instinct would lead us to predict that the more sophisticated algorithm
would yield better performance on a complex problem like this, we show that it
is outperformed by the algorithms using the simpler univariate model. We
hypothesise that this is caused by the more sophisticated algorithm being
impeded by the large number of interactions in the problem which are
unnecessary for its solution.
Related papers
- Maximum likelihood inference for high-dimensional problems with multiaffine variable relations [2.4578723416255754]
In this paper, we consider inference problems where the variables are related by multiaffine expressions.
We propose a novel Alternating and Iteratively-Reweighted Least Squares (AIRLS) algorithm, and prove its convergence for problems with Generalized Normal Distributions.
arXiv Detail & Related papers (2024-09-05T13:07:31Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Doubly Stochastic Matrix Models for Estimation of Distribution
Algorithms [2.28438857884398]
We explore the use of Doubly Matrices (DSM) for matching and assignment nature permutation problems.
Specifically, we adopt the framework of estimation of distribution algorithms and compare DSMs to some existing proposals for permutation problems.
Preliminary experiments on instances of the quadratic assignment problem validate this line of research and show that DSMs may obtain very competitive results.
arXiv Detail & Related papers (2023-04-05T14:36:48Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Distributionally Robust Optimization with Markovian Data [8.126833795693699]
We study a program where the probability distribution of the uncertain problem parameters is unknown.
We propose a data-driven distributionally to estimate the problem's objective function and optimal solution.
arXiv Detail & Related papers (2021-06-12T10:59:02Z) - DPER: Efficient Parameter Estimation for Randomly Missing Data [0.24466725954625884]
We propose novel algorithms to find the maximum likelihood estimates (MLEs) for a one-class/multiple-class randomly missing data set.
Our algorithms do not require multiple iterations through the data, thus promising to be less time-consuming than other methods.
arXiv Detail & Related papers (2021-06-06T16:37:48Z) - Differentially Private (Gradient) Expectation Maximization Algorithm
with Statistical Guarantees [25.996994681543903]
(Gradient) Expectation Maximization (EM) is a widely used algorithm for estimating the maximum likelihood of mixture models or incomplete data problems.
Previous research on this problem has already lead to the discovery of some Differentially Private (DP) algorithms for (Gradient) EM.
We propose in this paper the first DP version of (Gradient) EM algorithm with statistical guarantees.
arXiv Detail & Related papers (2020-10-22T03:41:19Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.