A Representation Separation Perspective to Correspondences-free
Unsupervised 3D Point Cloud Registration
- URL: http://arxiv.org/abs/2203.13239v1
- Date: Thu, 24 Mar 2022 17:50:19 GMT
- Title: A Representation Separation Perspective to Correspondences-free
Unsupervised 3D Point Cloud Registration
- Authors: Zhiyuan Zhang, Jiadai Sun, Yuchao Dai, Dingfu Zhou, Xibin Song, Mingyi
He
- Abstract summary: 3D point cloud registration in remote sensing field has been greatly advanced by deep learning based methods.
We propose a correspondences-free unsupervised point cloud registration (UPCR) method from the representation separation perspective.
Our method not only filters out the disturbance in pose-invariant representation but also is robust to partial-to-partial point clouds or noise.
- Score: 40.12490804387776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D point cloud registration in remote sensing field has been greatly advanced
by deep learning based methods, where the rigid transformation is either
directly regressed from the two point clouds (correspondences-free approaches)
or computed from the learned correspondences (correspondences-based
approaches). Existing correspondences-free methods generally learn the holistic
representation of the entire point cloud, which is fragile for partial and
noisy point clouds. In this paper, we propose a correspondences-free
unsupervised point cloud registration (UPCR) method from the representation
separation perspective. First, we model the input point cloud as a combination
of pose-invariant representation and pose-related representation. Second, the
pose-related representation is used to learn the relative pose wrt a "latent
canonical shape" for the source and target point clouds respectively. Third,
the rigid transformation is obtained from the above two learned relative poses.
Our method not only filters out the disturbance in pose-invariant
representation but also is robust to partial-to-partial point clouds or noise.
Experiments on benchmark datasets demonstrate that our unsupervised method
achieves comparable if not better performance than state-of-the-art supervised
registration methods.
Related papers
- BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration [28.75341781515012]
The goal of this paper is to address the problem of global point cloud registration (PCR) i.e., finding the optimal alignment between point clouds.
We show that state-of-the-art deep learning methods suffer from huge performance degradation when the point clouds are arbitrarily placed in space.
arXiv Detail & Related papers (2024-07-11T17:58:10Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
We introduce a self-supervised multimodal learning strategy that combines mesh-based functional map regularisation with a contrastive loss that couples mesh and point cloud data.
Our shape matching approach allows to obtain intramodal correspondences for triangle meshes, complete point clouds, and partially observed point clouds.
We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets.
arXiv Detail & Related papers (2023-03-20T09:47:02Z) - Deep Confidence Guided Distance for 3D Partial Shape Registration [14.315501760755609]
We present a novel non-iterative learnable method for partial-to-partial 3D shape registration.
We present Confidence Guided Distance Network (CGD-net), where we fuse learnable similarity between point embeddings and spatial distance between point clouds.
arXiv Detail & Related papers (2022-01-27T08:40:05Z) - ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes [55.689763519293464]
ConDor is a self-supervised method that learns to canonicalize the 3D orientation and position for full and partial 3D point clouds.
During inference, our method takes an unseen full or partial 3D point cloud at an arbitrary pose and outputs an equivariant canonical pose.
arXiv Detail & Related papers (2022-01-19T18:57:21Z) - Self-Supervised Feature Learning from Partial Point Clouds via Pose
Disentanglement [35.404285596482175]
We propose a novel self-supervised framework to learn informative representations from partial point clouds.
We leverage partial point clouds scanned by LiDAR that contain both content and pose attributes.
Our method not only outperforms existing self-supervised methods, but also shows a better generalizability across synthetic and real-world datasets.
arXiv Detail & Related papers (2022-01-09T14:12:50Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
We propose a simple yet effective approach for unsupervised point cloud learning.
In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud.
We conduct experiments on three downstream tasks which are 3D object classification, shape part segmentation and scene segmentation.
arXiv Detail & Related papers (2021-10-13T10:52:45Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - Correspondence-Free Point Cloud Registration with SO(3)-Equivariant
Implicit Shape Representations [12.343333815270402]
The proposed shape registration method achieves three major advantages through combining equivariant feature learning with implicit shape models.
Results show superior performance compared with existing correspondence-free deep registration methods.
arXiv Detail & Related papers (2021-07-21T18:18:21Z) - Learning 3D Dense Correspondence via Canonical Point Autoencoder [108.20735652143787]
We propose a canonical point autoencoder (CPAE) that predicts dense correspondences between 3D shapes of the same category.
The autoencoder performs two key functions: (a) encoding an arbitrarily ordered point cloud to a canonical primitive, and (b) decoding the primitive back to the original input instance shape.
arXiv Detail & Related papers (2021-07-10T15:54:48Z) - 3D Object Classification on Partial Point Clouds: A Practical
Perspective [91.81377258830703]
A point cloud is a popular shape representation adopted in 3D object classification.
This paper introduces a practical setting to classify partial point clouds of object instances under any poses.
A novel algorithm in an alignment-classification manner is proposed in this paper.
arXiv Detail & Related papers (2020-12-18T04:00:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.