論文の概要: BigDetection: A Large-scale Benchmark for Improved Object Detector
Pre-training
- arxiv url: http://arxiv.org/abs/2203.13249v1
- Date: Thu, 24 Mar 2022 17:57:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 13:04:21.019270
- Title: BigDetection: A Large-scale Benchmark for Improved Object Detector
Pre-training
- Title(参考訳): bigdetection: オブジェクト検出事前トレーニングを改善するための大規模ベンチマーク
- Authors: Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li and Xiangyang Xue
- Abstract要約: 我々はBigDetectionと呼ばれる新しい大規模ベンチマークを構築した。
私たちのデータセットには600のオブジェクトカテゴリがあり、3.4M以上のトレーニングイメージと36Mのバウンディングボックスが含まれています。
- 参考スコア(独自算出の注目度): 44.32782190757813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple datasets and open challenges for object detection have been
introduced in recent years. To build more general and powerful object detection
systems, in this paper, we construct a new large-scale benchmark termed
BigDetection. Our goal is to simply leverage the training data from existing
datasets (LVIS, OpenImages and Object365) with carefully designed principles,
and curate a larger dataset for improved detector pre-training. Specifically,
we generate a new taxonomy which unifies the heterogeneous label spaces from
different sources. Our BigDetection dataset has 600 object categories and
contains over 3.4M training images with 36M bounding boxes. It is much larger
in multiple dimensions than previous benchmarks, which offers both
opportunities and challenges. Extensive experiments demonstrate its validity as
a new benchmark for evaluating different object detection methods, and its
effectiveness as a pre-training dataset.
- Abstract(参考訳): 近年、複数のデータセットとオブジェクト検出のオープンチャレンジが導入されている。
本稿では,より汎用的で強力なオブジェクト検出システムを構築するために,BigDetectionと呼ばれる大規模ベンチマークを構築した。
我々の目標は、既存のデータセット(LVIS、OpenImages、Object365)からのトレーニングデータを慎重に設計した原則で単純に活用し、検出器事前トレーニングを改善するためのより大きなデータセットをキュレートすることにあります。
具体的には、異種ラベル空間を異なるソースから統一する新しい分類法を作成する。
BigDetectionデータセットには600のオブジェクトカテゴリがあり、3.4M以上のトレーニングイメージと36Mのバウンディングボックスが含まれている。
それは、機会と課題の両方を提供する以前のベンチマークよりも、複数の次元ではるかに大きい。
大規模な実験は、異なる物体検出方法を評価するための新しいベンチマークとしての有効性と、事前学習データセットとしての有効性を示す。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - Proposal-Contrastive Pretraining for Object Detection from Fewer Data [11.416621957617334]
本稿では,新しい教師なし総合事前学習手法ProSeCoを提案する。
ProSeCoは、コントラスト学習のために検出器によって生成される多数のオブジェクト提案を使用する。
本手法は,標準および新しいベンチマークにおいて,対象検出のための教師なし事前学習において,最先端の手法であることを示す。
論文 参考訳(メタデータ) (2023-10-25T17:59:26Z) - MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection
Generalization [3.8243923744440926]
特定の点分布を持つソースデータセットでトレーニングされた3Dオブジェクト検出モデルは、目に見えないデータセットに一般化する上で困難であることが示されている。
我々は、アノテーション付きソースデータセットから利用可能な情報を、MDT3D(Multi-Dataset Training for 3D Object Detection)メソッドで活用する。
トレーニング中にデータセットの混合をどのように管理し、最後にクロスデータセット拡張メソッド、すなわちクロスデータセットオブジェクトインジェクションを導入するかを示します。
論文 参考訳(メタデータ) (2023-08-02T08:20:00Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
新しいデザイン(De Detection Hubという名前)は、データセット認識とカテゴリ整列である。
データセットの不整合を緩和し、検出器が複数のデータセットをまたいで学習するための一貫性のあるガイダンスを提供する。
データセット間のカテゴリは、ワンホットなカテゴリ表現を単語埋め込みに置き換えることで、意味的に統一された空間に整列される。
論文 参考訳(メタデータ) (2022-06-07T17:59:44Z) - Tiny Object Tracking: A Large-scale Dataset and A Baseline [40.93697515531104]
大規模なビデオデータセットを作成し、合計217Kフレームの434のシーケンスを含む。
データ作成において、幅広い視点とシーンの複雑さをカバーするため、12の課題属性を考慮に入れます。
統合されたフレームワークで3段階の知識蒸留を行うMKDNet(Multilevel Knowledge Distillation Network)を提案する。
論文 参考訳(メタデータ) (2022-02-11T15:00:32Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
オブジェクトのデータセットの追跡は2,907本の高解像度ビデオで構成され、平均で30分の長さの多様な環境でキャプチャされる。
ビデオの任意の時点で移動するオブジェクトにアノテータにラベルを付け、ファクトラムの後に名前を付けるように求めます。
我々の語彙は、既存の追跡データセットと著しく大きく、質的に異なる。
論文 参考訳(メタデータ) (2020-05-20T21:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。