論文の概要: Supplemental Material: Lifelong Generative Modelling Using Dynamic
Expansion Graph Model
- arxiv url: http://arxiv.org/abs/2203.13503v1
- Date: Fri, 25 Mar 2022 08:39:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-28 21:23:20.322902
- Title: Supplemental Material: Lifelong Generative Modelling Using Dynamic
Expansion Graph Model
- Title(参考訳): 補助材料:動的拡張グラフモデルを用いた生涯生成モデル
- Authors: Fei Ye and Adrian G. Bors
- Abstract要約: appendixには、さらに視覚的な結果と、挑戦的なデータセットの数値結果が含まれている。
また,提案する理論解析フレームワークの詳細な証明も提供する。
- 参考スコア(独自算出の注目度): 11.540150938141034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we provide the appendix for Lifelong Generative Modelling
Using Dynamic Expansion Graph Model. This appendix includes additional visual
results as well as the numerical results on the challenging datasets. In
addition, we also provide detailed proofs for the proposed theoretical analysis
framework. The source code can be found in
https://github.com/dtuzi123/Expansion-Graph-Model.
- Abstract(参考訳): 本稿では,動的拡張グラフモデルを用いた生涯生成モデリングのための付録を提供する。
この付録には、さらに視覚的な結果と、挑戦的なデータセットの数値的な結果が含まれている。
また,提案する理論解析フレームワークの詳細な証明も提供する。
ソースコードはhttps://github.com/dtuzi123/Expansion-Graph-Modelにある。
関連論文リスト
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - Grounding and Enhancing Grid-based Models for Neural Fields [52.608051828300106]
本稿では,グリッドモデルに関する理論的枠組みを紹介する。
このフレームワークは、これらのモデルの近似と一般化の挙動がグリッド接カーネル(GTK)によって決定されることを指摘している。
導入されたフレームワークは、Multiplicative Fourier Adaptive Grid(MulFAGrid)と呼ばれる新しいグリッドベースモデルの開発を動機付けている。
論文 参考訳(メタデータ) (2024-03-29T06:33:13Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
拡散モデルは、新しい生成パラダイムとして、様々な画像生成タスクにおいて顕著な成功を収めた。
グラフ生成は多くの実世界のアプリケーションを持つグラフ上で重要な計算タスクである。
論文 参考訳(メタデータ) (2023-02-06T06:58:17Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - SPAN: Subgraph Prediction Attention Network for Dynamic Graphs [8.601023852899166]
本稿では,動的グラフのサブグラフ予測のための新しいモデルを提案する。
現在のスナップショットにあるサブグラフ構造から、次のスナップショットにあるサブグラフ構造へのマッピングを直接学習する。
実験の結果,この2つのタスクにおいて,モデルが他のモデルより優れており,5.02%から10.88%に向上していることがわかった。
論文 参考訳(メタデータ) (2021-08-17T17:29:52Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - A Tunable Model for Graph Generation Using LSTM and Conditional VAE [1.399948157377307]
データからグラフの構造的特徴を学習しながら、特定の特徴をチューニングできる生成モデルを提案する。
モデルによって生成される様々な特徴を持つグラフのデータセットを用いて、我々のモデルが特定の特徴を持つグラフを生成できることを確認する。
論文 参考訳(メタデータ) (2021-04-15T06:47:14Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
我々は超複雑特徴変換の特性を利用するグラフニューラルネットワークを開発した。
特に、提案したモデルのクラスでは、代数自身を特定する乗法則は、トレーニング中にデータから推測される。
提案するハイパーコンプレックスgnnをいくつかのオープングラフベンチマークデータセット上でテストし,そのモデルが最先端の性能に達することを示す。
論文 参考訳(メタデータ) (2021-03-30T18:01:06Z) - Graph Coding for Model Selection and Anomaly Detection in Gaussian
Graphical Models [2.752817022620644]
ガウス図形モデルにおけるデータ解析のための記述長を拡張する。
本手法は,モデルの複雑さを正確に説明するために普遍的なグラフ符号化法を用いる。
実験により,本手法は一般的に用いられる手法と比較して優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-02-04T06:13:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。