Continuous quantum gate sets and pulse class meta-optimization
- URL: http://arxiv.org/abs/2203.13594v3
- Date: Tue, 13 Dec 2022 22:42:34 GMT
- Title: Continuous quantum gate sets and pulse class meta-optimization
- Authors: Francesco Preti, Tommaso Calarco and Felix Motzoi
- Abstract summary: We show that learning families of optimal control pulses depend adaptively on various parameters, in order to obtain a global optimal mapping from the space of potential parameter values to the control space.
Our proposed method is tested on different experimentally relevant quantum gates and proves capable of producing high-fidelity pulses even in presence of multiple variable or uncertain parameters with wide ranges.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reducing the circuit depth of quantum circuits is a crucial bottleneck to
enabling quantum technology. This depth is inversely proportional to the number
of available quantum gates that have been synthesised. Moreover, quantum gate
synthesis and control problems exhibit a vast range of external parameter
dependencies, both physical and application-specific. In this article we
address the possibility of learning families of optimal control pulses which
depend adaptively on various parameters, in order to obtain a global optimal
mapping from the space of potential parameter values to the control space, and
hence continuous classes of gates. Our proposed method is tested on different
experimentally relevant quantum gates and proves capable of producing
high-fidelity pulses even in presence of multiple variable or uncertain
parameters with wide ranges.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - SpacePulse: Combining Parameterized Pulses and Contextual Subspace for
More Practical VQE [16.890279629884493]
We explore the integration of parameterized quantum pulses with the contextual subspace method.
Working with pulses allows us to potentially access areas of the Hilbert space that are inaccessible with a CNOT-based circuit decomposition.
arXiv Detail & Related papers (2023-11-29T07:55:31Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - High-fidelity quantum control by polychromatic pulse trains [0.0]
We introduce a quantum control technique using polychromatic pulse sequences (PPS)
PPS consists of pulses with different carrier frequencies, i.e. different detunings with respect to the qubit transition frequency.
We derive numerous PPS, which generate broadband, narrowband, and passband excitation profiles for different target transition probabilities.
arXiv Detail & Related papers (2022-04-05T12:17:24Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Robust Control of Quantum Dynamics under Input and Parameter Uncertainty [0.0]
Engineering quantum systems remains challenging due to noise and uncertainties associated with the field and Hamiltonian parameters.
We extend and generalize the quantum control robustness analysis method to diverse quantum observables, gates and moments thereof.
We present a framework for achieving robust control via evolutionary open loop (model-based) and closed loop (model-free) approaches.
arXiv Detail & Related papers (2021-02-23T17:28:21Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.