Fast Hybrid Image Retargeting
- URL: http://arxiv.org/abs/2203.13595v1
- Date: Fri, 25 Mar 2022 11:46:06 GMT
- Title: Fast Hybrid Image Retargeting
- Authors: Daniel Valdez-Balderas, Oleg Muraveynyk, Timothy Smith
- Abstract summary: We propose a method that quantifies and limits warping distortions with the use of content-aware cropping.
Our method outperforms recent approaches, while running in a fraction of their execution time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image retargeting changes the aspect ratio of images while aiming to preserve
content and minimise noticeable distortion. Fast and high-quality methods are
particularly relevant at present, due to the large variety of image and display
aspect ratios. We propose a retargeting method that quantifies and limits
warping distortions with the use of content-aware cropping. The pipeline of the
proposed approach consists of the following steps. First, an importance map of
a source image is generated using deep semantic segmentation and saliency
detection models. Then, a preliminary warping mesh is computed using axis
aligned deformations, enhanced with the use of a distortion measure to ensure
low warping deformations. Finally, the retargeted image is produced using a
content-aware cropping algorithm. In order to evaluate our method, we perform a
user study based on the RetargetMe benchmark. Experimental analyses show that
our method outperforms recent approaches, while running in a fraction of their
execution time.
Related papers
- Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
We introduce a novel Uncertainty-Aware (SAUNA) transform, which adds pixel uncertainty to the ground truth.
Our results indicate that the integration of the SAUNA transform and these segmentation losses led to significant performance boosts for different segmentation models.
arXiv Detail & Related papers (2024-05-27T04:17:10Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
We propose a novel compressive sensing framework to reconstruct images given any random selection of measurements.
MOSAIC incorporates an embedding technique to efficiently apply attention mechanisms on an encoded sequence of measurements.
A range of experiments validate our proposed architecture as a promising alternative for existing CS reconstruction methods.
arXiv Detail & Related papers (2023-06-01T17:05:02Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale.
One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample.
We propose a generative model combining deep image priors with deep generative priors.
arXiv Detail & Related papers (2022-05-05T02:18:26Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.