Robust Classification by Coupling Data Mollification with Label Smoothing
- URL: http://arxiv.org/abs/2406.01494v3
- Date: Thu, 01 May 2025 14:25:15 GMT
- Title: Robust Classification by Coupling Data Mollification with Label Smoothing
- Authors: Markus Heinonen, Ba-Hien Tran, Michael Kampffmeyer, Maurizio Filippone,
- Abstract summary: We propose a novel approach of coupling data mollification, in the form of image noising and blurring, with label smoothing to align predicted label confidences with image degradation.<n>We demonstrate improved robustness and uncertainty on the corrupted image benchmarks of CIFAR, TinyImageNet and ImageNet datasets.
- Score: 25.66357344079206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introducing training-time augmentations is a key technique to enhance generalization and prepare deep neural networks against test-time corruptions. Inspired by the success of generative diffusion models, we propose a novel approach of coupling data mollification, in the form of image noising and blurring, with label smoothing to align predicted label confidences with image degradation. The method is simple to implement, introduces negligible overheads, and can be combined with existing augmentations. We demonstrate improved robustness and uncertainty quantification on the corrupted image benchmarks of CIFAR, TinyImageNet and ImageNet datasets.
Related papers
- CorrFill: Enhancing Faithfulness in Reference-based Inpainting with Correspondence Guidance in Diffusion Models [21.798183378799667]
We propose CorrFill, a training-free module designed to enhance the awareness of geometric correlations between the reference and target images.
Experimental results demonstrate that CorrFill significantly enhances the performance of multiple baseline diffusion-based methods.
arXiv Detail & Related papers (2025-01-04T18:31:01Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.<n>We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.<n>During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)<n>RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models [18.44432223381586]
Recently, a number of image-mixing-based augmentation techniques have been introduced to improve the generalization of deep neural networks.
In these techniques, two or more randomly selected natural images are mixed together to generate an augmented image.
We propose DiffuseMix, a novel data augmentation technique that leverages a diffusion model to reshape training images.
arXiv Detail & Related papers (2024-04-05T05:31:02Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Robustness-Guided Image Synthesis for Data-Free Quantization [15.91924736452861]
We propose Robustness-Guided Image Synthesis (RIS) to enrich the semantics of synthetic images and improve image diversity.
RIS is a simple but effective method to enrich the semantics of synthetic images and improve image diversity.
We achieve state-of-the-art performance for various settings on data-free quantization and can be extended to other data-free compression tasks.
arXiv Detail & Related papers (2023-10-05T16:39:14Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Fast Hybrid Image Retargeting [0.0]
We propose a method that quantifies and limits warping distortions with the use of content-aware cropping.
Our method outperforms recent approaches, while running in a fraction of their execution time.
arXiv Detail & Related papers (2022-03-25T11:46:06Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
We develop a transductive meta-learning method that uses unlabelled instances to improve few-shot image classification performance.
Our approach combines a regularized neural adaptive feature extractor to achieve improved test-time classification accuracy using unlabelled data.
arXiv Detail & Related papers (2020-06-17T05:42:47Z) - On Feature Normalization and Data Augmentation [55.115583969831]
Moment Exchange encourages the model to utilize the moment information also for recognition models.
We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels.
As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation approaches.
arXiv Detail & Related papers (2020-02-25T18:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.