Rank-based Non-dominated Sorting
- URL: http://arxiv.org/abs/2203.13654v2
- Date: Mon, 28 Mar 2022 09:22:28 GMT
- Title: Rank-based Non-dominated Sorting
- Authors: Bogdan Burlacu
- Abstract summary: We introduce Rank Sort, a non-dominated sorting approach exploiting sorting stability and ordinal information to avoid expensive dominance comparisons.
Two algorithmic variants are proposed: the first one, RankOrdinal (RO), uses ordinal rank comparisons in order to determine dominance and requires O(N) space; the second one, RankIntersect (RS), uses set intersections and bit-level parallelism and requires O(N2) space.
We demonstrate the efficiency of the proposed methods in comparison with other state of the art algorithms in empirical simulations using the NSGA2 algorithm as well as synthetic benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-dominated sorting is a computational bottleneck in Pareto-based
multi-objective evolutionary algorithms (MOEAs) due to the runtime-intensive
comparison operations involved in establishing dominance relationships between
solution candidates. In this paper we introduce Rank Sort, a non-dominated
sorting approach exploiting sorting stability and ordinal information to avoid
expensive dominance comparisons in the rank assignment phase. Two algorithmic
variants are proposed: the first one, RankOrdinal (RO), uses ordinal rank
comparisons in order to determine dominance and requires O(N) space; the second
one, RankIntersect (RS), uses set intersections and bit-level parallelism and
requires O(N^2) space. We demonstrate the efficiency of the proposed methods in
comparison with other state of the art algorithms in empirical simulations
using the NSGA2 algorithm as well as synthetic benchmarks. The RankIntersect
algorithm is able to significantly outperform the current state of the art
offering up to 30% speed-up for many objectives. C++ implementations are
provided for all algorithms.
Related papers
- A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
We provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems.
The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure.
arXiv Detail & Related papers (2024-05-31T19:35:34Z) - Regularization-Based Methods for Ordinal Quantification [49.606912965922504]
We study the ordinal case, i.e., the case in which a total order is defined on the set of n>2 classes.
We propose a novel class of regularized OQ algorithms, which outperforms existing algorithms in our experiments.
arXiv Detail & Related papers (2023-10-13T16:04:06Z) - Prasatul Matrix: A Direct Comparison Approach for Analyzing Evolutionary
Optimization Algorithms [2.1320960069210475]
Direct comparison approach is proposed to analyze the performance of evolutionary optimization algorithms.
Five different performance measures are designed based on the prasatul matrix to evaluate the performance of algorithms.
arXiv Detail & Related papers (2022-12-01T17:21:44Z) - Efficient Approximate Kernel Based Spike Sequence Classification [56.2938724367661]
Machine learning models, such as SVM, require a definition of distance/similarity between pairs of sequences.
Exact methods yield better classification performance, but they pose high computational costs.
We propose a series of ways to improve the performance of the approximate kernel in order to enhance its predictive performance.
arXiv Detail & Related papers (2022-09-11T22:44:19Z) - Heuristic Search for Rank Aggregation with Application to Label Ranking [16.275063634853584]
We propose an effective hybrid evolutionary ranking algorithm to solve the rank aggregation problem.
The algorithm features a semantic crossover based on concordant pairs and a late acceptance local search reinforced by an efficient incremental evaluation technique.
Experiments are conducted to assess the algorithm, indicating a highly competitive performance on benchmark instances.
arXiv Detail & Related papers (2022-01-11T11:43:17Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Performance Analysis of Meta-heuristic Algorithms for a Quadratic
Assignment Problem [6.555180412600522]
A quadratic assignment problem (QAP) is an optimization problem that belongs to the class of NP-hard ones.
Heuristics and meta-heuristics algorithm are prevalent solution methods for this problem.
This paper is one of comparative studies to apply different metaheuristic algorithms for solving the QAP.
arXiv Detail & Related papers (2020-07-29T15:02:07Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.