Extreme Algorithm Selection With Dyadic Feature Representation
- URL: http://arxiv.org/abs/2001.10741v2
- Date: Thu, 22 Oct 2020 07:56:33 GMT
- Title: Extreme Algorithm Selection With Dyadic Feature Representation
- Authors: Alexander Tornede, Marcel Wever, Eyke H\"ullermeier
- Abstract summary: We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
- Score: 78.13985819417974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithm selection (AS) deals with selecting an algorithm from a fixed set
of candidate algorithms most suitable for a specific instance of an algorithmic
problem, e.g., choosing solvers for SAT problems. Benchmark suites for AS
usually comprise candidate sets consisting of at most tens of algorithms,
whereas in combined algorithm selection and hyperparameter optimization
problems the number of candidates becomes intractable, impeding to learn
effective meta-models and thus requiring costly online performance evaluations.
Therefore, here we propose the setting of extreme algorithm selection (XAS)
where we consider fixed sets of thousands of candidate algorithms, facilitating
meta learning. We assess the applicability of state-of-the-art AS techniques to
the XAS setting and propose approaches leveraging a dyadic feature
representation in which both problem instances and algorithms are described. We
find the latter to improve significantly over the current state of the art in
various metrics.
Related papers
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection [0.9281671380673306]
A key challenge in the application of evolutionary algorithms is the selection of an algorithm instance that best suits the problem at hand.
We analyze in this work how such prior performance data can be used to infer informed dynamic algorithm selection schemes for the solution of pseudo-Boolean optimization problems.
arXiv Detail & Related papers (2021-02-12T12:27:02Z) - Towards Meta-Algorithm Selection [78.13985819417974]
Instance-specific algorithm selection (AS) deals with the automatic selection of an algorithm from a fixed set of candidates.
We show that meta-algorithm-selection can indeed prove beneficial in some cases.
arXiv Detail & Related papers (2020-11-17T17:27:33Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.