論文の概要: Gransformer: Transformer-based Graph Generation
- arxiv url: http://arxiv.org/abs/2203.13655v3
- Date: Thu, 30 May 2024 18:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 00:04:47.823290
- Title: Gransformer: Transformer-based Graph Generation
- Title(参考訳): Gransformer: Transformerベースのグラフ生成
- Authors: Ahmad Khajenezhad, Seyed Ali Osia, Mahmood Karimian, Hamid Beigy,
- Abstract要約: Gransformerは、グラフを生成するためのTransformerに基づくアルゴリズムである。
我々は、与えられたグラフの構造情報を利用するためにTransformerエンコーダを変更する。
また、ノードペア間のグラフベースの親しみ度尺度も導入する。
- 参考スコア(独自算出の注目度): 14.161975556325796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have become widely used in various tasks, such as natural language processing and machine vision. This paper proposes Gransformer, an algorithm based on Transformer for generating graphs. We modify the Transformer encoder to exploit the structural information of the given graph. The attention mechanism is adapted to consider the presence or absence of edges between each pair of nodes. We also introduce a graph-based familiarity measure between node pairs that applies to both the attention and the positional encoding. This measure of familiarity is based on message-passing algorithms and contains structural information about the graph. Also, this measure is autoregressive, which allows our model to acquire the necessary conditional probabilities in a single forward pass. In the output layer, we also use a masked autoencoder for density estimation to efficiently model the sequential generation of dependent edges connected to each node. In addition, we propose a technique to prevent the model from generating isolated nodes without connection to preceding nodes by using BFS node orderings. We evaluate this method using synthetic and real-world datasets and compare it with related ones, including recurrent models and graph convolutional networks. Experimental results show that the proposed method performs comparatively to these methods.
- Abstract(参考訳): トランスフォーマーは自然言語処理や機械ビジョンといった様々なタスクで広く使われている。
本稿では,グラフ生成のためのTransformerに基づくアルゴリズムであるGransformerを提案する。
我々は、与えられたグラフの構造情報を利用するためにTransformerエンコーダを変更する。
注意機構は、各ノード間のエッジの有無を考慮に入れられる。
また、注目度と位置エンコーディングの両方に適用されるノードペア間のグラフベースの親しみ度尺度も導入する。
この親しみの尺度は、メッセージパッシングアルゴリズムに基づいており、グラフに関する構造情報を含んでいる。
また,本手法は自己回帰的であり,1回の前方通過で必要条件付き確率を得ることが可能である。
出力層では,各ノードに接続された従属エッジの逐次生成を効率的にモデル化するために,マスク付きオートエンコーダを用いて密度推定を行う。
さらに,BFSノードオーダリングを用いて,先行ノードに接続することなく,モデルが孤立ノードを生成するのを防ぐ手法を提案する。
本手法は,合成および実世界のデータセットを用いて評価し,再帰モデルやグラフ畳み込みネットワークを含む関連するデータセットと比較する。
実験結果から,提案手法はこれらの手法と比較して高い性能を示した。
関連論文リスト
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
グラフ生成モデルはグラフ上の分布を定義する。
グラフ上の正確な結合確率とシーケンシャルプロセスのノード順序を導出する。
我々は,従来の手法のアドホックノード順序を使わずに,この境界を最大化してグラフ生成モデルを訓練する。
論文 参考訳(メタデータ) (2021-06-11T06:37:52Z) - A Graph VAE and Graph Transformer Approach to Generating Molecular
Graphs [1.6631602844999724]
グラフ畳み込み層とグラフプーリング層をフル活用した変分オートエンコーダとトランスベースモデルを提案する。
トランスモデルは新しいノードエンコーディング層を実装し、一般的にトランスフォーマーで使用される位置エンコーディングを置き換え、グラフ上で動く位置情報を持たないトランスフォーマーを生成する。
実験では、生成ノードとエッジの両方の重要性を考慮して、分子生成のベンチマークタスクを選択しました。
論文 参考訳(メタデータ) (2021-04-09T13:13:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。