Gransformer: Transformer-based Graph Generation
- URL: http://arxiv.org/abs/2203.13655v3
- Date: Thu, 30 May 2024 18:08:00 GMT
- Title: Gransformer: Transformer-based Graph Generation
- Authors: Ahmad Khajenezhad, Seyed Ali Osia, Mahmood Karimian, Hamid Beigy,
- Abstract summary: Gransformer is an algorithm based on Transformer for generating graphs.
We modify the Transformer encoder to exploit the structural information of the given graph.
We also introduce a graph-based familiarity measure between node pairs.
- Score: 14.161975556325796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have become widely used in various tasks, such as natural language processing and machine vision. This paper proposes Gransformer, an algorithm based on Transformer for generating graphs. We modify the Transformer encoder to exploit the structural information of the given graph. The attention mechanism is adapted to consider the presence or absence of edges between each pair of nodes. We also introduce a graph-based familiarity measure between node pairs that applies to both the attention and the positional encoding. This measure of familiarity is based on message-passing algorithms and contains structural information about the graph. Also, this measure is autoregressive, which allows our model to acquire the necessary conditional probabilities in a single forward pass. In the output layer, we also use a masked autoencoder for density estimation to efficiently model the sequential generation of dependent edges connected to each node. In addition, we propose a technique to prevent the model from generating isolated nodes without connection to preceding nodes by using BFS node orderings. We evaluate this method using synthetic and real-world datasets and compare it with related ones, including recurrent models and graph convolutional networks. Experimental results show that the proposed method performs comparatively to these methods.
Related papers
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Discrete Graph Auto-Encoder [52.50288418639075]
We introduce a new framework named Discrete Graph Auto-Encoder (DGAE)
We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations.
In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model.
arXiv Detail & Related papers (2023-06-13T12:40:39Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
A graph generative model defines a distribution over graphs.
We derive the exact joint probability over the graph and the node ordering of the sequential process.
We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods.
arXiv Detail & Related papers (2021-06-11T06:37:52Z) - A Graph VAE and Graph Transformer Approach to Generating Molecular
Graphs [1.6631602844999724]
We propose a variational autoencoder and a transformer based model which fully utilise graph convolutional and graph pooling layers.
The transformer model implements a novel node encoding layer, replacing the position encoding typically used in transformers, to create a transformer with no position information that operates on graphs.
In experiments we chose a benchmark task of molecular generation, given the importance of both generated node and edge features.
arXiv Detail & Related papers (2021-04-09T13:13:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.