Ensemble Quadratic Assignment Network for Graph Matching
- URL: http://arxiv.org/abs/2403.06457v1
- Date: Mon, 11 Mar 2024 06:34:05 GMT
- Title: Ensemble Quadratic Assignment Network for Graph Matching
- Authors: Haoru Tan, Chuang Wang, Sitong Wu, Xu-Yao Zhang, Fei Yin, Cheng-Lin
Liu
- Abstract summary: Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
- Score: 52.20001802006391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph matching is a commonly used technique in computer vision and pattern
recognition. Recent data-driven approaches have improved the graph matching
accuracy remarkably, whereas some traditional algorithm-based methods are more
robust to feature noises, outlier nodes, and global transformation
(e.g.~rotation). In this paper, we propose a graph neural network (GNN) based
approach to combine the advantages of data-driven and traditional methods. In
the GNN framework, we transform traditional graph-matching solvers as
single-channel GNNs on the association graph and extend the single-channel
architecture to the multi-channel network. The proposed model can be seen as an
ensemble method that fuses multiple algorithms at every iteration. Instead of
averaging the estimates at the end of the ensemble, in our approach, the
independent iterations of the ensembled algorithms exchange their information
after each iteration via a 1x1 channel-wise convolution layer. Experiments show
that our model improves the performance of traditional algorithms
significantly. In addition, we propose a random sampling strategy to reduce the
computational complexity and GPU memory usage, so the model applies to matching
graphs with thousands of nodes. We evaluate the performance of our method on
three tasks: geometric graph matching, semantic feature matching, and few-shot
3D shape classification. The proposed model performs comparably or outperforms
the best existing GNN-based methods.
Related papers
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
We propose an approach to reduce the number of nodes that are included during aggregation.
We achieve this through a sparse decomposition, learning to approximate node representations using a weighted sum of linearly transformed features.
We demonstrate via extensive experiments that our method outperforms other baselines designed for inference speedup.
arXiv Detail & Related papers (2024-10-25T17:52:16Z) - Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant [1.8606770727950463]
We propose several GNN-based architectures to tackle the graph partitioning problem for Markov Chains described as kinetic networks.
This approach aims to minimize how much a proposed partitioning changes the Kemeny constant.
We show how simple GraphSAGE-based GNNs with linear layers can outperform much larger and more expressive attention-based models in this context.
arXiv Detail & Related papers (2023-12-22T17:19:50Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Evaluating Graph Generative Models with Contrastively Learned Features [9.603362400275868]
We show that Graph Substructure Networks (GSNs) are better at distinguishing the distances between graph datasets.
We propose using representations from contrastively trained GNNs, rather than random GNNs, and show this gives more reliable evaluation metrics.
arXiv Detail & Related papers (2022-06-13T15:14:41Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.