論文の概要: Clustering Aided Weakly Supervised Training to Detect Anomalous Events
in Surveillance Videos
- arxiv url: http://arxiv.org/abs/2203.13704v1
- Date: Fri, 25 Mar 2022 15:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-28 13:57:26.022873
- Title: Clustering Aided Weakly Supervised Training to Detect Anomalous Events
in Surveillance Videos
- Title(参考訳): 監視映像における異常事象検出のための弱監視訓練のクラスタリング
- Authors: Muhammad Zaigham Zaheer, Arif Mahmood, Marcella Astrid, Seung-Ik Lee
- Abstract要約: ランダムなバッチ選択機構を含む複数のコントリビューションを有する弱教師付き異常検出システムを提案する。
ラベルノイズを緩和し,異常領域と正常領域の表現学習を改善するために,クラスタリング損失ブロックを提案する。
提案手法の大規模解析は,3つの一般的な異常検出データセットを用いて行われる。
- 参考スコア(独自算出の注目度): 20.368114998124295
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Formulating learning systems for the detection of real-world anomalous events
using only video-level labels is a challenging task mainly due to the presence
of noisy labels as well as the rare occurrence of anomalous events in the
training data. We propose a weakly supervised anomaly detection system which
has multiple contributions including a random batch selection mechanism to
reduce inter-batch correlation and a normalcy suppression block which learns to
minimize anomaly scores over normal regions of a video by utilizing the overall
information available in a training batch. In addition, a clustering loss block
is proposed to mitigate the label noise and to improve the representation
learning for the anomalous and normal regions. This block encourages the
backbone network to produce two distinct feature clusters representing normal
and anomalous events. Extensive analysis of the proposed approach is provided
using three popular anomaly detection datasets including UCF-Crime,
ShanghaiTech, and UCSD Ped2. The experiments demonstrate a superior anomaly
detection capability of our approach.
- Abstract(参考訳): 映像レベルラベルのみを用いた実世界の異常事象検出のための学習システムは,ノイズラベルの存在や,トレーニングデータにおける異常事象の発生が稀であることから,課題となっている。
本稿では,バッチ間相関を低減させるランダムバッチ選択機構と,トレーニングバッチで利用可能な全情報を利用してビデオの正規領域における異常スコアを最小化する正規性抑制ブロックを含む複数の寄与を有する弱教師付き異常検出システムを提案する。
また,ラベルノイズを緩和し,異常領域と正常領域の表現学習を改善するために,クラスタリング損失ブロックを提案する。
このブロックは、バックボーンネットワークが通常のイベントと異常なイベントを表す2つの異なる特徴クラスタを生成することを奨励する。
UCF-Crime, ShanghaiTech, UCSD Ped2を含む3つの一般的な異常検出データセットを用いて提案手法の大規模解析を行った。
実験により,本手法の異常検出性能が向上した。
関連論文リスト
- Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised
Video Anomaly Detection [4.494911384096143]
ビデオにおける異常事象の検出は、監視などのアプリケーションにおいて重要な問題である。
セグメントレベル(正規/異常)の擬似ラベルを生成する簡易な2段擬似ラベル生成フレームワークを提案する。
提案した粗大な擬似ラベル生成器は、慎重に設計された階層的分割クラスタリングと統計的仮説テストを用いている。
論文 参考訳(メタデータ) (2023-10-26T17:59:19Z) - A Supervised Embedding and Clustering Anomaly Detection method for
classification of Mobile Network Faults [0.0]
本稿では,SEMC-AD(Supervised Embedding and Clustering Anomaly Detection)を紹介する。
モバイルネットワークにおける異常警報ログを効率よく識別し、手動監視の課題を軽減するために設計された手法である。
SEMC-ADは99%の異常検出を達成し、ランダム森林とXGBoostはそれぞれ86%と81%の異常を検知している。
論文 参考訳(メタデータ) (2023-10-10T16:54:25Z) - Abnormal Event Detection via Hypergraph Contrastive Learning [54.80429341415227]
異常事象検出は多くの実アプリケーションにおいて重要な役割を果たす。
本稿では,分散異種情報ネットワークにおける異常事象検出問題について検討する。
AEHCLと呼ばれる新しいハイパーグラフコントラスト学習法が,異常事象のパターンをフルに捉えるために提案されている。
論文 参考訳(メタデータ) (2023-04-02T08:23:20Z) - An optimization method for out-of-distribution anomaly detection models [6.075775003017512]
頻繁な誤報は、産業アプリケーションにおける教師なし異常検出アルゴリズムの促進を妨げている。
SVMベースの分類器は後処理モジュールとして利用され、オブジェクトレベルでの異常マップから誤報を識別する。
論文 参考訳(メタデータ) (2023-02-02T08:29:10Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
本稿では,複数の仮想シーンで構成された教師付きオープンセット・ベンチマークを提案する。
既存のデータセットとは異なり、トレーニング時に画素レベルでアノテートされた異常事象を導入する。
UBnormalは最先端の異常検出フレームワークの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-16T17:28:46Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
異常検出は、医療や金融システムなど、さまざまな現実世界のアプリケーションにおいて重要な役割を担っている。
正規データと異常データの間の異常スコアの差を学習・拡大するために,スコア誘導正規化を用いた新しいスコアネットワークを提案する。
次に,スコア誘導型オートエンコーダ(SG-AE)を提案する。
論文 参考訳(メタデータ) (2021-09-10T06:14:53Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
本稿では,多様体の寄与を考慮した弱教師付き異常検出手法を提案する。
提案手法は, UCF Crime と ShanghaiTech のデータセットでそれぞれ 83.03% と 89.67% のフレームレベルの AUC 性能を得る。
論文 参考訳(メタデータ) (2020-11-24T13:27:40Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。