A Hybrid Framework for Sequential Data Prediction with End-to-End
Optimization
- URL: http://arxiv.org/abs/2203.13787v1
- Date: Fri, 25 Mar 2022 17:13:08 GMT
- Title: A Hybrid Framework for Sequential Data Prediction with End-to-End
Optimization
- Authors: Mustafa E. Ayd{\i}n, Suleyman S. Kozat
- Abstract summary: We investigate nonlinear prediction in an online setting and introduce a hybrid model that effectively mitigates hand-designed features and manual model selection issues.
We employ a recurrent neural network (LSTM) for adaptive feature extraction from sequential data and a gradient boosting machinery (soft GBDT) for effective supervised regression.
We demonstrate the learning behavior of our algorithm on synthetic data and the significant performance improvements over the conventional methods over various real life datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate nonlinear prediction in an online setting and introduce a
hybrid model that effectively mitigates, via an end-to-end architecture, the
need for hand-designed features and manual model selection issues of
conventional nonlinear prediction/regression methods. In particular, we use
recursive structures to extract features from sequential signals, while
preserving the state information, i.e., the history, and boosted decision trees
to produce the final output. The connection is in an end-to-end fashion and we
jointly optimize the whole architecture using stochastic gradient descent, for
which we also provide the backward pass update equations. In particular, we
employ a recurrent neural network (LSTM) for adaptive feature extraction from
sequential data and a gradient boosting machinery (soft GBDT) for effective
supervised regression. Our framework is generic so that one can use other deep
learning architectures for feature extraction (such as RNNs and GRUs) and
machine learning algorithms for decision making as long as they are
differentiable. We demonstrate the learning behavior of our algorithm on
synthetic data and the significant performance improvements over the
conventional methods over various real life datasets. Furthermore, we openly
share the source code of the proposed method to facilitate further research.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Explicit Foundation Model Optimization with Self-Attentive Feed-Forward
Neural Units [4.807347156077897]
Iterative approximation methods using backpropagation enable the optimization of neural networks, but they remain computationally expensive when used at scale.
This paper presents an efficient alternative for optimizing neural networks that reduces the costs of scaling neural networks and provides high-efficiency optimizations for low-resource applications.
arXiv Detail & Related papers (2023-11-13T17:55:07Z) - Hybrid State Space-based Learning for Sequential Data Prediction with
Joint Optimization [0.0]
We introduce a hybrid model that mitigates, via a joint mechanism, the need for domain-specific feature engineering issues of conventional nonlinear prediction models.
We achieve this by introducing novel state space representations for the base models, which are then combined to provide a full state space representation of the hybrid or the ensemble.
Due to such novel combination and joint optimization, we demonstrate significant improvements in widely publicized real life competition datasets.
arXiv Detail & Related papers (2023-09-19T12:00:28Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive
Least-Squares [8.443742714362521]
We develop an algorithm for one-pass learning which seeks to perfectly fit every new datapoint while changing the parameters in a direction that causes the least change to the predictions on previous datapoints.
Our algorithm uses the memory efficiently by exploiting the structure of the streaming data via an incremental principal component analysis (IPCA)
Our experiments show the effectiveness of the proposed method compared to the baselines.
arXiv Detail & Related papers (2022-07-28T02:01:31Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
A gradient-free training framework based on data assimilation is proposed to avoid the calculation of gradients.
The results show that the proposed training framework performed better than the gradient decent method.
arXiv Detail & Related papers (2020-10-06T11:12:23Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.