Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches
- URL: http://arxiv.org/abs/2410.21313v1
- Date: Fri, 25 Oct 2024 20:50:32 GMT
- Title: Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches
- Authors: Haoyue Bai,
- Abstract summary: We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
- Score: 4.577842191730992
- License:
- Abstract: Deep learning has been demonstrated with tremendous success in recent years. Despite so, its performance in practice often degenerates drastically when encountering out-of-distribution (OoD) data, i.e. training and test data are sampled from different distributions. In this thesis, we study ways toward robust OoD generalization for deep learning, i.e., its performance is not susceptible to distribution shift in the test data. We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition. It employs decomposed feature representation by orthogonalizing the two gradients of losses for category and context branches. Furthermore, we perform gradient-based augmentation on context-related features (e.g., styles, backgrounds, or scenes of target objects) to improve the robustness of learned representations. Results show that our approach generalizes well for different distribution shifts. We then study the problem of strengthening neural architecture search in OoD scenarios. We propose to optimize the architecture parameters that minimize the validation loss on synthetic OoD data, under the condition that corresponding network parameters minimize the training loss. Moreover, to obtain a proper validation set, we learn a conditional generator by maximizing their losses computed by different neural architectures. Results show that our approach effectively discovers robust architectures that perform well for OoD generalization.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
We propose a novel adaptive learning rate scheduling strategy tailored for the architecture parameters of DARTS.
Our approach dynamically adjusts the learning rate of the architecture parameters based on the training epoch, preventing the disruption of well-trained representations.
arXiv Detail & Related papers (2024-06-11T07:32:25Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - NAS-OoD: Neural Architecture Search for Out-of-Distribution
Generalization [23.859795806659395]
We propose robust Neural Architecture Search for OoD generalization (NAS-OoD)
NAS-OoD achieves superior performance on various OoD generalization benchmarks with deep models having a much fewer number of parameters.
On a real industry dataset, the proposed NAS-OoD method reduces the error rate by more than 70% compared with the state-of-the-art method.
arXiv Detail & Related papers (2021-09-05T10:23:29Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Generalized Reinforcement Meta Learning for Few-Shot Optimization [3.7675996866306845]
We present a generic and flexible Reinforcement Learning (RL) based meta-learning framework for the problem of few-shot learning.
Our framework could be easily extended to do network architecture search.
arXiv Detail & Related papers (2020-05-04T03:21:05Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.