Achieving the ultimate end-to-end rates of lossy quantum communication
networks
- URL: http://arxiv.org/abs/2203.13924v4
- Date: Thu, 1 Sep 2022 15:58:35 GMT
- Title: Achieving the ultimate end-to-end rates of lossy quantum communication
networks
- Authors: Matthew S. Winnel, Joshua J. Guanzon, Nedasadat Hosseinidehaj, Timothy
C. Ralph
- Abstract summary: In this work, we give a practical design for an optimal entanglement distillation protocol followed by teleportation.
Our ultimate design is an iterative approach, where each purification step operates on shared entangled states.
As a simpler design, we show that the first round of iteration can purify completely at high rates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of quantum communications promises the faithful distribution of
quantum information, quantum entanglement, and absolutely secret keys, however,
the highest rates of these tasks are fundamentally limited by the transmission
distance between quantum repeaters. The ultimate end-to-end rates of quantum
communication networks are known to be achievable by an optimal entanglement
distillation protocol followed by teleportation. In this work, we give a
practical design for this achievability. Our ultimate design is an iterative
approach, where each purification step operates on shared entangled states and
detects loss errors at the highest rates allowed by physics. As a simpler
design, we show that the first round of iteration can purify completely at high
rates. We propose an experimental implementation using linear optics and
photon-number measurements which is robust to inefficient operations and
measurements, showcasing its near-term potential for real-world practical
applications.
Related papers
- Ultimate-rate quantum repeaters for quantum communications [0.0]
Quantum repeaters are necessary to overcome the repeaterless bound.
In this thesis, we give physical repeater designs for this achievability.
We also propose practical repeater designs with near-term potential for real-world practical applications.
arXiv Detail & Related papers (2023-06-15T02:19:18Z) - Breaking universal limitations on quantum conference key agreement
without quantum memory [6.300599548850421]
We report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel.
Our protocol can break key rate bounds on quantum communication over quantum network without quantum memory.
Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
arXiv Detail & Related papers (2022-12-10T06:37:53Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Deterministic microwave-optical transduction based on quantum
teleportation [4.046143379963425]
coherent transduction between microwave and optical frequencies is critical to interconnect superconducting quantum processors over long distances.
We propose a scheme based on continuous-variable quantum teleportation.
We show that the teleportation-based scheme maintains a significant rate advantage robustly for all values of cooperativity.
arXiv Detail & Related papers (2021-06-26T15:02:49Z) - Quantum teleportation is a reversal of quantum measurement [0.0]
We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and reversing operation.
Our framework makes it possible to find an optimal protocol for quantum teleportation enabling a faithful transfer of unknown quantum states.
arXiv Detail & Related papers (2021-04-25T15:03:08Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.