Deterministic microwave-optical transduction based on quantum
teleportation
- URL: http://arxiv.org/abs/2106.14037v2
- Date: Wed, 15 Sep 2021 13:43:27 GMT
- Title: Deterministic microwave-optical transduction based on quantum
teleportation
- Authors: Jing Wu, Chaohan Cui, Linran Fan and Quntao Zhuang
- Abstract summary: coherent transduction between microwave and optical frequencies is critical to interconnect superconducting quantum processors over long distances.
We propose a scheme based on continuous-variable quantum teleportation.
We show that the teleportation-based scheme maintains a significant rate advantage robustly for all values of cooperativity.
- Score: 4.046143379963425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coherent transduction between microwave and optical frequencies is
critical to interconnect superconducting quantum processors over long
distances. However, it is challenging to establish such a quantum interface
with high efficiency and small added noise based on the standard direct
conversion scheme. Here, we propose a transduction scheme based on
continuous-variable quantum teleportation. Reliable quantum information
transmission can be realized with an arbitrarily small cooperativity, in
contrast to the direct conversion scheme which requires a large minimum
cooperativity. We show that the teleportation-based scheme maintains a
significant rate advantage robustly for all values of cooperativity. We further
investigate the performance in the transduction of complex quantum states such
as cat states and Gottesman-Kitaev-Preskill(GKP) states and show that a higher
fidelity or success probability can be achieved with the teleportation-based
scheme. Our scheme significantly reduces the device requirement, and makes
quantum transduction between microwave and optical frequencies feasible in the
near future.
Related papers
- Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Continuous optical-to-mechanical quantum state transfer in the
unresolved sideband regime [0.0]
We propose a continuous protocol that operates in the unresolved sideband regime.
The protocol is based on feedback cooling, can be implemented with current technology, and is able to transfer non-Gaussian quantum states with high fidelity.
arXiv Detail & Related papers (2023-01-10T08:57:43Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Long-distance multiplexed quantum teleportation from a telecom photon to
a solid-state qubit [0.0]
We demonstrate long distance quantum teleportation from a photonic qubit at telecom wavelength to a matter qubit, stored as a collective excitation in a solid-state quantum memory.
Our approach is time-multiplexed, allowing for an increase in the teleportation rate, and is directly compatible with the deployed telecommunication networks.
arXiv Detail & Related papers (2022-09-13T18:09:56Z) - Quantum transduction with microwave and optical entanglement [9.78316480470736]
Microwave-optical entanglement can be generated using various platforms.
In this paper, we make the teleportation induced conversion scheme more concrete in the framework of quantum channel theory.
arXiv Detail & Related papers (2022-02-09T17:51:29Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Optically-Heralded Entanglement of Superconducting Systems in Quantum
Networks [0.0]
We propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation.
This technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.
arXiv Detail & Related papers (2020-12-24T19:00:01Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Microwave Quantum Link between Superconducting Circuits Housed in
Spatially Separated Cryogenic Systems [43.55994393060723]
We report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters.
We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively.
arXiv Detail & Related papers (2020-08-04T15:36:51Z) - Two-way covert quantum communication in the microwave regime [0.0]
Quantum communication addresses the problem of exchanging information across macroscopic distances.
We advance a new paradigm for secure quantum communication by combining backscattering concepts with covert communication in the microwave regime.
This work makes a decisive step toward implementing secure quantum communication concepts in the previously uncharted $1$-$10$ GHz frequency range.
arXiv Detail & Related papers (2020-04-15T16:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.