Identifying Peer Influence in Therapeutic Communities Adjusting for Latent Homophily
- URL: http://arxiv.org/abs/2203.14223v4
- Date: Mon, 10 Jun 2024 14:41:43 GMT
- Title: Identifying Peer Influence in Therapeutic Communities Adjusting for Latent Homophily
- Authors: Shanjukta Nath, Keith Warren, Subhadeep Paul,
- Abstract summary: We investigate peer role model influence on successful graduation from Therapeutic Communities (TCs) for substance abuse and criminal behavior.
To identify peer influence in the presence of unobserved homophily in observational data, we model the network with a latent variable model.
Our results indicate a positive effect of peers' graduation on residents' graduation and that it differs based on gender, race, and the definition of the role model effect.
- Score: 1.6385815610837167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate peer role model influence on successful graduation from Therapeutic Communities (TCs) for substance abuse and criminal behavior. We use data from 3 TCs that kept records of exchanges of affirmations among residents and their precise entry and exit dates, allowing us to form peer networks and define a causal effect of interest. The role model effect measures the difference in the expected outcome of a resident (ego) who can observe one of their peers graduate before the ego's exit vs not graduating. To identify peer influence in the presence of unobserved homophily in observational data, we model the network with a latent variable model. We show that our peer influence estimator is asymptotically unbiased when the unobserved latent positions are estimated from the observed network. We additionally propose a measurement error bias correction method to further reduce bias due to estimating latent positions. Our simulations show the proposed latent homophily adjustment and bias correction perform well in finite samples. We also extend the methodology to the case of binary response with a probit model. Our results indicate a positive effect of peers' graduation on residents' graduation and that it differs based on gender, race, and the definition of the role model effect. A counterfactual exercise quantifies the potential benefits of an intervention directly on the treated resident and indirectly on their peers through network propagation.
Related papers
- Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Contagion Effect Estimation Using Proximal Embeddings [17.483428990993744]
Contagion effect refers to the causal effect of peers' behavior on an individual's outcome in social networks.
Existing proxy-based methods for contagion effect estimation have a very high variance when the proxies are high-dimensional.
We introduce a novel framework, Proximal Embeddings (ProEmb), that integrates variational autoencoders with adversarial networks.
arXiv Detail & Related papers (2023-06-04T20:55:13Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Using Embeddings for Causal Estimation of Peer Influence in Social
Networks [12.971519813535734]
We address the problem of using observational data to estimate peer contagion effects.
We show how embedding methods can be used to identify and estimate this effect.
arXiv Detail & Related papers (2022-05-17T00:22:56Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Undersmoothing Causal Estimators with Generative Trees [0.0]
Inferring individualised treatment effects from observational data can unlock the potential for targeted interventions.
It is, however, hard to infer these effects from observational data.
In this paper, we explore a novel generative tree based approach that tackles model misspecification directly.
arXiv Detail & Related papers (2022-03-16T11:59:38Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Plinko: A Theory-Free Behavioral Measure of Priors for Statistical
Learning and Mental Model Updating [62.997667081978825]
We present three experiments using "Plinko", a behavioral task in which participants estimate distributions of ball drops over all available outcomes.
We show that participant priors cluster around prototypical probability distributions and that prior cluster membership may indicate learning ability.
We verify that individual participant priors are reliable representations and that learning is not impeded when faced with a physically implausible ball drop distribution.
arXiv Detail & Related papers (2021-07-23T22:27:30Z) - Causal Inference Struggles with Agency on Online Platforms [32.81856583026165]
We conduct four large-scale within-study comparisons on Twitter aimed at assessing the effectiveness of observational studies derived from user self-selection.
Our results suggest that observational studies derived from user self-selection are a poor alternative to randomized experimentation on online platforms.
arXiv Detail & Related papers (2021-07-19T16:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.