論文の概要: DC Quantum Magnetometry Below the Ramsey Limit
- arxiv url: http://arxiv.org/abs/2203.14230v1
- Date: Sun, 27 Mar 2022 07:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 17:08:42.988345
- Title: DC Quantum Magnetometry Below the Ramsey Limit
- Title(参考訳): ラムゼー限界以下の直流量子磁気測定
- Authors: Alexander A. Wood, Alastair Stacey, Andy M. Martin
- Abstract要約: 従来の$Tast$-limited dcマグネトメトリーの感度を超えるdc磁場の1桁以上の量子センシングを実証する。
スピンコヒーレンス時間に匹敵する周期で回転するダイヤモンド中の窒素空孔中心を用い, 磁気感度の計測時間と回転速度依存性を特徴づけた。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate quantum sensing of dc magnetic fields that exceeds the
sensitivity of conventional $T_2^\ast$-limited dc magnetometry by more than an
order of magnitude. We used nitrogen-vacancy centers in a diamond rotating at
periods comparable to the spin coherence time, and characterize the dependence
of magnetic sensitivity on measurement time and rotation speed. Our method
up-converts only the dc field of interest and preserves the quantum coherence
of the sensor. These results definitively improve the sensitivity of a quantum
magnetometer to dc fields, an important and useful addition to the quantum
sensing toolbox.
- Abstract(参考訳): 従来の$T_2^\ast$-limited dcマグネトメトリーの感度を超えるdc磁場の1桁以上の量子センシングを実証する。
スピンコヒーレンス時間に匹敵する周期で回転するダイヤモンドにおいて,窒素空洞中心を用い,磁気感度の計測時間と回転速度依存性を特徴付ける。
本手法は、関心のdc場のみを上向きに変換し、センサの量子コヒーレンスを保存する。
これらの結果は、量子センシングツールボックスの重要かつ有用な追加であるdc磁場に対する量子磁気センサの感度を確実に改善する。
関連論文リスト
- Quantum dynamic response-based NV-diamond magnetometry: Robustness to
decoherence and applications in motion detection of magnetic nanoparticles [5.067521928161945]
本稿では,物理観測器の動的応答を量子系のクエンチに活用する新しい量子センシングプロトコルを提案する。
具体的には、ダイヤモンド中の窒素空孔色中心を用いて、量子応答によるスカラーとベクトル磁気学の両方を実現する。
従来の干渉型センサでは難しい磁性ナノ粒子の運動を検出する手法を提案する。
論文 参考訳(メタデータ) (2023-07-11T13:44:37Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
非ゼロ結晶体を特徴とするスピンS=1で形成されるヘテロスピン系のコヒーレントスピンダイナミクスについて検討した。
我々は、それらの間のゼロ量子コヒーレンスが驚くほど長寿命であることを示します。
これらのスピンダイアドは、精密磁力計のナノスケール勾配計や、磁気ノイズのない電気測定と熱センサーのプローブとして利用することができる。
論文 参考訳(メタデータ) (2023-06-29T19:27:17Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
電子スピンレジスタのサイズを拡大するためのスケーラブルなアプローチを提案する。
我々は, 中心NVのコヒーレンス限界外における未知電子スピンの検出とコヒーレント制御を実証するために, このアプローチを実験的に実現した。
我々の研究は、ナノスケールセンシングを推進し、誤り訂正のための相関ノイズスペクトロスコピーを有効にし、量子通信のためのスピンチェーン量子ワイヤの実現を促進するため、より大きな量子レジスタを工学的に開発する方法を開拓する。
論文 参考訳(メタデータ) (2023-06-29T17:55:16Z) - Sensitive AC and DC Magnetometry with Nitrogen-Vacancy Center Ensembles
in Diamond [0.0]
これまでに報告された最も感度の高い窒素空洞型バルク磁気センサを実証した。
この装置は、磁場に対するNVの固定応答を保存するフラックス濃縮器を含まない。
論文 参考訳(メタデータ) (2023-05-10T16:02:58Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - $T_2$-limited dc Quantum Magnetometry via Flux Modulation [9.185105581888457]
高感度磁気メトリーは、生体磁気学と地磁気学の分野において重要である。
ここでは、ダイヤモンドの窒素空孔中心に基づく、T$制限量子磁気メトリーを実演する。
32$rm pT/Hz1/2$のdc磁力計の感度は、ラムゼー型法よりも100倍に圧倒的に向上した。
論文 参考訳(メタデータ) (2022-04-15T06:43:20Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
固体中の核スピンは環境に弱く結合し、量子情報処理と慣性センシングの魅力的な候補となる。
我々は、原子核スピンコヒーレンス時間よりも高速で1,kHzで物理的に回転するダイヤモンド中の光核スピン偏光と原子核スピンの高速量子制御を実証した。
我々の研究は、それまで到達不可能だったNV核スピンの自由を解放し、量子制御と回転センシングに対する新しいアプローチを解き放つ。
論文 参考訳(メタデータ) (2021-07-27T03:39:36Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
標準量子限界における熱力学ノイズと機械的検出ノイズを考慮した最適磁場分解能の評価を行った。
近年の文献で指摘されているエネルギー分解限界(ERL, Energy Resolution Limit)は, 桁違いに超えることがある。
論文 参考訳(メタデータ) (2021-04-29T15:44:12Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
量子センシングは、小さな外部信号を測定するために量子システムの強い感度を利用する。
ダイヤモンド中の窒素空孔中心は、現実世界の量子センシングアプリケーションにとって最も有望なプラットフォームの一つである。
論文 参考訳(メタデータ) (2020-10-08T18:24:16Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
ナノスケールでのスピンの電気的制御は、スピントロニクスのアーキテクチャ上の利点を提供する。
分子スピン材料における電場(E-場)感度の最近の実証が注目されている。
これまでに報告された電子場感度はかなり弱く、より強いスピン電結合を持つ分子をどうやって設計するかという問題を引き起こした。
論文 参考訳(メタデータ) (2020-05-03T09:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。