Local-Adaptive Face Recognition via Graph-based Meta-Clustering and
Regularized Adaptation
- URL: http://arxiv.org/abs/2203.14327v1
- Date: Sun, 27 Mar 2022 15:20:14 GMT
- Title: Local-Adaptive Face Recognition via Graph-based Meta-Clustering and
Regularized Adaptation
- Authors: Wenbin Zhu, Chien-Yi Wang, Kuan-Lun Tseng, Shang-Hong Lai, Baoyuan
Wang
- Abstract summary: We introduce a new problem setup called Local-Adaptive Face Recognition (LaFR)
LaFR aims at getting optimal performance by training local-adapted models automatically and un-supervisely.
We show that LaFR can further improve the global model by a simple federated aggregation over the updated local models.
- Score: 21.08555249703121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the rising concern of data privacy, it's reasonable to assume the
local client data can't be transferred to a centralized server, nor their
associated identity label is provided. To support continuous learning and fill
the last-mile quality gap, we introduce a new problem setup called
Local-Adaptive Face Recognition (LaFR). Leveraging the environment-specific
local data after the deployment of the initial global model, LaFR aims at
getting optimal performance by training local-adapted models automatically and
un-supervisely, as opposed to fixing their initial global model. We achieve
this by a newly proposed embedding cluster model based on Graph Convolution
Network (GCN), which is trained via meta-optimization procedure. Compared with
previous works, our meta-clustering model can generalize well in unseen local
environments. With the pseudo identity labels from the clustering results, we
further introduce novel regularization techniques to improve the model
adaptation performance. Extensive experiments on racial and internal sensor
adaptation demonstrate that our proposed solution is more effective for
adapting face recognition models in each specific environment. Meanwhile, we
show that LaFR can further improve the global model by a simple federated
aggregation over the updated local models.
Related papers
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - FedCME: Client Matching and Classifier Exchanging to Handle Data
Heterogeneity in Federated Learning [5.21877373352943]
Data heterogeneity across clients is one of the key challenges in Federated Learning (FL)
We propose a novel FL framework named FedCME by client matching and classifier exchanging.
Experimental results demonstrate that FedCME performs better than FedAvg, FedProx, MOON and FedRS on popular federated learning benchmarks.
arXiv Detail & Related papers (2023-07-17T15:40:45Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Personalized Federated Learning with Hidden Information on Personalized
Prior [18.8426865970643]
We propose pFedBreD, a framework to solve the problem we model using Bregman divergence regularization.
Our experiments show that our proposal significantly outcompetes other PFL algorithms on multiple public benchmarks.
arXiv Detail & Related papers (2022-11-19T12:45:19Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - Robust Convergence in Federated Learning through Label-wise Clustering [6.693651193181458]
Non-IID dataset and heterogeneous environment of the local clients are regarded as a major issue in Federated Learning (FL)
We propose a novel Label-wise clustering algorithm that guarantees the trainability among geographically heterogeneous local clients.
Our paper shows that proposed Label-wise clustering demonstrates prompt and robust convergence compared to other FL algorithms.
arXiv Detail & Related papers (2021-12-28T18:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.