Modality Alignment Meets Federated Broadcasting
- URL: http://arxiv.org/abs/2411.15837v1
- Date: Sun, 24 Nov 2024 13:30:03 GMT
- Title: Modality Alignment Meets Federated Broadcasting
- Authors: Yuting Ma, Shengeng Tang, Xiaohua Xu, Lechao Cheng,
- Abstract summary: Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
- Score: 9.752555511824593
- License:
- Abstract: Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data. Despite advancements in homogeneous data scenarios, maintaining performance between the global and local clients in FL over heterogeneous data remains challenging due to data distribution variations that degrade model convergence and increase computational costs. This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices. Inspired by multi-modal learning paradigms like CLIP, this design aligns cross-client learning by treating server-client communications akin to multi-modal broadcasting. We initialize with a pre-trained model to mitigate overfitting, updating select parameters through low-rank adaptation (LoRA) to meet computational demand and performance efficiency. Local models train independently and communicate updates to the server, which aggregates parameters via a query-based method, facilitating cross-client knowledge sharing and performance improvement under extreme heterogeneity. Extensive experiments on benchmark datasets demonstrate the efficacy in maintaining generalization and robustness, even in highly heterogeneous settings.
Related papers
- FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning [14.866327821524854]
HiCS-FL is a novel client selection method in which the server estimates statistical heterogeneity of a client's data using the client's update of the network's output layer.
In non-IID settings HiCS-FL achieves faster convergence than state-of-the-art FL client selection schemes.
arXiv Detail & Related papers (2023-09-30T00:29:30Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - FedCME: Client Matching and Classifier Exchanging to Handle Data
Heterogeneity in Federated Learning [5.21877373352943]
Data heterogeneity across clients is one of the key challenges in Federated Learning (FL)
We propose a novel FL framework named FedCME by client matching and classifier exchanging.
Experimental results demonstrate that FedCME performs better than FedAvg, FedProx, MOON and FedRS on popular federated learning benchmarks.
arXiv Detail & Related papers (2023-07-17T15:40:45Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.