MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance
Segmentation
- URL: http://arxiv.org/abs/2203.14662v1
- Date: Mon, 28 Mar 2022 11:22:58 GMT
- Title: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance
Segmentation
- Authors: Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang
- Abstract summary: This paper studies the 3D instance segmentation problem, which has a variety of real-world applications such as robotics and augmented reality.
We propose a novel framework to group and refine the 3D instances.
Our approach achieves a 66.4% mAP with the 0.5 IoU threshold on the ScanNetV2 test set, which is 1.9% higher than the state-of-the-art method.
- Score: 36.28586460186891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the 3D instance segmentation problem, which has a variety
of real-world applications such as robotics and augmented reality. Since the
surroundings of 3D objects are of high complexity, the separating of different
objects is very difficult. To address this challenging problem, we propose a
novel framework to group and refine the 3D instances. In practice, we first
learn an offset vector for each point and shift it to its predicted instance
center. To better group these points, we propose a Hierarchical Point Grouping
algorithm to merge the centrally aggregated points progressively. All points
are grouped into small clusters, which further gradually undergo another
clustering procedure to merge into larger groups. These multi-scale groups are
exploited for instance prediction, which is beneficial for predicting instances
with different scales. In addition, a novel MaskScoreNet is developed to
produce binary point masks of these groups for further refining the
segmentation results. Extensive experiments conducted on the ScanNetV2 and
S3DIS benchmarks demonstrate the effectiveness of the proposed method. For
instance, our approach achieves a 66.4\% mAP with the 0.5 IoU threshold on the
ScanNetV2 test set, which is 1.9\% higher than the state-of-the-art method.
Related papers
- AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
Making sense of 3D environments requires fine-grained scene understanding.
We propose to predict instance segmentations for 3D scenes in an unsupervised way.
Our approach attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline.
arXiv Detail & Related papers (2024-03-24T22:53:16Z) - Open3DIS: Open-Vocabulary 3D Instance Segmentation with 2D Mask Guidance [49.14140194332482]
We introduce Open3DIS, a novel solution designed to tackle the problem of Open-Vocabulary Instance within 3D scenes.
Objects within 3D environments exhibit diverse shapes, scales, and colors, making precise instance-level identification a challenging task.
arXiv Detail & Related papers (2023-12-17T10:07:03Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - ISBNet: a 3D Point Cloud Instance Segmentation Network with
Instance-aware Sampling and Box-aware Dynamic Convolution [14.88505076974645]
ISBNet is a novel method that represents instances as kernels and decodes instance masks via dynamic convolution.
We set new state-of-the-art results on ScanNetV2 (55.9), S3DIS (60.8), S3LS3D (49.2) in terms of AP and retains fast inference time (237ms per scene on ScanNetV2.
arXiv Detail & Related papers (2023-03-01T06:06:28Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Instance Segmentation in 3D Scenes using Semantic Superpoint Tree
Networks [64.27814530457042]
We propose an end-to-end solution of Semantic Superpoint Tree Network (SSTNet) for proposing object instances from scene points.
Key in SSTNet is an intermediate, semantic superpoint tree (SST), which is constructed based on the learned semantic features of superpoints.
SSTNet ranks top on the ScanNet (V2) leaderboard, with 2% higher of mAP than the second best method.
arXiv Detail & Related papers (2021-08-17T07:25:14Z) - Hierarchical Aggregation for 3D Instance Segmentation [41.20244892803604]
We propose a clustering-based framework named HAIS, which makes full use of spatial relation of points and point sets.
It ranks 1st on the ScanNet v2 benchmark, achieving the highest 69.9% AP50 and surpassing previous state-of-the-art (SOTA) methods by a large margin.
arXiv Detail & Related papers (2021-08-05T03:34:34Z) - PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation [111.7241018610573]
We present PointGroup, a new end-to-end bottom-up architecture for instance segmentation.
We design a two-branch network to extract point features and predict semantic labels and offsets, for shifting each point towards its respective instance centroid.
A clustering component is followed to utilize both the original and offset-shifted point coordinate sets, taking advantage of their complementary strength.
We conduct extensive experiments on two challenging datasets, ScanNet v2 and S3DIS, on which our method achieves the highest performance, 63.6% and 64.0%, compared to 54.9% and 54.4% achieved by former best
arXiv Detail & Related papers (2020-04-03T16:26:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.