Infinite-Dimensional Sparse Learning in Linear System Identification
- URL: http://arxiv.org/abs/2203.14731v1
- Date: Mon, 28 Mar 2022 13:18:48 GMT
- Title: Infinite-Dimensional Sparse Learning in Linear System Identification
- Authors: Mingzhou Yin, Mehmet Tolga Akan, Andrea Iannelli, Roy S. Smith
- Abstract summary: This paper proposes an infinite-dimensional sparse learning algorithm based on atomic norm regularization.
The difficulty in solving the problem lies in the fact that there are an infinite number of possible atomic models.
- Score: 0.2867517731896504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regularized methods have been widely applied to system identification
problems without known model structures. This paper proposes an
infinite-dimensional sparse learning algorithm based on atomic norm
regularization. Atomic norm regularization decomposes the transfer function
into first-order atomic models and solves a group lasso problem that selects a
sparse set of poles and identifies the corresponding coefficients. The
difficulty in solving the problem lies in the fact that there are an infinite
number of possible atomic models. This work proposes a greedy algorithm that
generates new candidate atomic models maximizing the violation of the
optimality condition of the existing problem. This algorithm is able to solve
the infinite-dimensional group lasso problem with high precision. The algorithm
is further extended to reduce the bias and reject false positives in pole
location estimation by iteratively reweighted adaptive group lasso and
complementary pairs stability selection respectively. Numerical results
demonstrate that the proposed algorithm performs better than benchmark
parameterized and regularized methods in terms of both impulse response fitting
and pole location estimation.
Related papers
- A Novel Normalized-Cut Solver with Nearest Neighbor Hierarchical
Initialization [107.07093621337084]
Normalized-Cut (N-Cut) is a famous model of spectral clustering.
Traditional N-Cut solvers are two-stage: 1) calculating the continuous spectral embedding of normalized Laplacian matrix; 2) discretization via $K$-means or spectral rotation.
We propose a novel N-Cut solver based on the famous coordinate descent method.
arXiv Detail & Related papers (2023-11-26T07:11:58Z) - Complexity of Block Coordinate Descent with Proximal Regularization and
Applications to Wasserstein CP-dictionary Learning [1.4010916616909743]
We consider the block coordinate descent of Gauss-Sdel type with regularization (BCD-PR)
We show that an W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(
arXiv Detail & Related papers (2023-06-04T17:52:49Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Sharp global convergence guarantees for iterative nonconvex
optimization: A Gaussian process perspective [30.524043513721168]
We develop a general recipe for analyzing the convergence of iterative algorithms for a class of regression models.
deterministicly, we accurately capture both the convergence rate of the algorithm and the eventual error floor in the finite-sample regime.
We show sharp convergence rates for both higher-order algorithms based on alternating updates and first-order algorithms based on subgradient subgradients.
arXiv Detail & Related papers (2021-09-20T21:48:19Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
Problems of convex optimization with two sets of constraints arise frequently in the context of semidefinite programming.
Since projection onto the first set of constraints is difficult, it becomes necessary to explore projection-free algorithms.
The efficacy of the proposed algorithms is tested on relevant applications of sparse matrix estimation, clustering via semidefinite relaxation, and uniform sparsest cut problem.
arXiv Detail & Related papers (2021-07-14T08:01:30Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.