論文の概要: Multi-Task Learning for Visual Scene Understanding
- arxiv url: http://arxiv.org/abs/2203.14896v1
- Date: Mon, 28 Mar 2022 16:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-29 12:40:42.835905
- Title: Multi-Task Learning for Visual Scene Understanding
- Title(参考訳): 視覚シーン理解のためのマルチタスク学習
- Authors: Simon Vandenhende
- Abstract要約: この論文はコンピュータビジョンの文脈におけるマルチタスク学習に関するものである。
マルチタスク学習の重要な側面に対処するいくつかの手法を提案する。
その結果,マルチタスク学習の最先端にいくつかの進歩が見られた。
- 参考スコア(独自算出の注目度): 7.191593674138455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent progress in deep learning, most approaches still go for a
silo-like solution, focusing on learning each task in isolation: training a
separate neural network for each individual task. Many real-world problems,
however, call for a multi-modal approach and, therefore, for multi-tasking
models. Multi-task learning (MTL) aims to leverage useful information across
tasks to improve the generalization capability of a model. This thesis is
concerned with multi-task learning in the context of computer vision. First, we
review existing approaches for MTL. Next, we propose several methods that
tackle important aspects of multi-task learning. The proposed methods are
evaluated on various benchmarks. The results show several advances in the
state-of-the-art of multi-task learning. Finally, we discuss several
possibilities for future work.
- Abstract(参考訳): ディープラーニングの最近の進歩にもかかわらず、ほとんどのアプローチは依然としてサイロのようなソリューションを目指しており、個々のタスクを個別に学習することに集中している。
しかし、現実世界の多くの問題は、マルチモーダルアプローチであり、それゆえにマルチタスクモデルである。
マルチタスク学習(MTL)は、タスク間で有用な情報を活用し、モデルの一般化能力を改善することを目的としている。
この論文はコンピュータビジョンの文脈におけるマルチタスク学習に関するものである。
まず、MTLの既存のアプローチについてレビューする。
次に,マルチタスク学習の重要な側面に取り組む手法を提案する。
提案手法は様々なベンチマークで評価される。
その結果,マルチタスク学習の最先端にいくつかの進歩が見られる。
最後に,今後の作業の可能性について検討する。
関連論文リスト
- Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - Few-shot Multimodal Multitask Multilingual Learning [0.0]
我々は、事前学習された視覚と言語モデルを適用することで、マルチモーダルマルチタスク(FM3)設定のための数ショット学習を提案する。
FM3は、ビジョンと言語領域における最も顕著なタスクと、それらの交差点を学習する。
論文 参考訳(メタデータ) (2023-02-19T03:48:46Z) - Multimodality Representation Learning: A Survey on Evolution,
Pretraining and Its Applications [47.501121601856795]
マルチモダリティ表現学習は、異なるモダリティとそれらの相関から情報を埋め込む学習手法である。
異なるモダリティからのクロスモーダル相互作用と補完情報は、高度なモデルが任意のマルチモーダルタスクを実行するために不可欠である。
本調査では,深層学習型マルチモーダルアーキテクチャの進化と拡張に関する文献を報告する。
論文 参考訳(メタデータ) (2023-02-01T11:48:34Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
我々は,MTMVCSF(Common and Special Features)に基づくマルチタスク多視点学習(multi-Task Multi-View learning)と呼ばれる,新しい半教師付きアルゴリズムを提案する。
AN-MTMVCSFと呼ばれるマルチタスク・マルチタスク・マルチビュー・アルゴリズムが提案されている。
これらのアルゴリズムの有効性は、実世界と合成データの双方でよく設計された実験によって証明される。
論文 参考訳(メタデータ) (2022-01-15T11:26:28Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
本稿では,マルチモーダル融合とマルチタスク学習の両方に適用可能な,自己適応的でパラメータフリーなチャネル交換ネットワーク(CEN)を提案する。
CENは異なるモダリティのワーク間でチャネルを動的に交換する。
濃密な画像予測を応用するために、CENの有効性は4つの異なるシナリオで検証される。
論文 参考訳(メタデータ) (2021-12-04T05:47:54Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Small Towers Make Big Differences [59.243296878666285]
マルチタスク学習は、複数の機械学習タスクを同時に解決することを目的としている。
マルチタスク学習問題に対する優れた解法は、Paretoの最適性に加えて一般化可能であるべきである。
本稿では,マルチタスクモデルのためのパラメータ下自己助詞の手法を提案し,両世界のベストを達成した。
論文 参考訳(メタデータ) (2020-08-13T10:45:31Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。