LiDAR Snowfall Simulation for Robust 3D Object Detection
- URL: http://arxiv.org/abs/2203.15118v1
- Date: Mon, 28 Mar 2022 21:48:26 GMT
- Title: LiDAR Snowfall Simulation for Robust 3D Object Detection
- Authors: Martin Hahner, Christos Sakaridis, Mario Bijelic, Felix Heide, Fisher
Yu, Dengxin Dai, Luc Van Gool
- Abstract summary: We propose a physically based method to simulate the effect of snowfall on real clear-weather LiDAR point clouds.
Our method samples snow particles in 2D space for each LiDAR line and uses the induced geometry to modify the measurement for each LiDAR beam.
We use our simulation to generate partially synthetic snowy LiDAR data and leverage these data for training 3D object detection models that are robust to snowfall.
- Score: 116.10039516404743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is a central task for applications such as autonomous
driving, in which the system needs to localize and classify surrounding traffic
agents, even in the presence of adverse weather. In this paper, we address the
problem of LiDAR-based 3D object detection under snowfall. Due to the
difficulty of collecting and annotating training data in this setting, we
propose a physically based method to simulate the effect of snowfall on real
clear-weather LiDAR point clouds. Our method samples snow particles in 2D space
for each LiDAR line and uses the induced geometry to modify the measurement for
each LiDAR beam accordingly. Moreover, as snowfall often causes wetness on the
ground, we also simulate ground wetness on LiDAR point clouds. We use our
simulation to generate partially synthetic snowy LiDAR data and leverage these
data for training 3D object detection models that are robust to snowfall. We
conduct an extensive evaluation using several state-of-the-art 3D object
detection methods and show that our simulation consistently yields significant
performance gains on the real snowy STF dataset compared to clear-weather
baselines and competing simulation approaches, while not sacrificing
performance in clear weather. Our code is available at
www.github.com/SysCV/LiDAR_snow_sim.
Related papers
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust
3D Object Detection [26.278415287992964]
Previous research has attempted to address this by simulating the noise from rain to improve the robustness of detection models.
We propose a novel rain simulation method, termed DRET, that unifies Dynamics and Rainy Environment Theory.
We also present a Sunny-to-Rainy Knowledge Distillation approach to enhance 3D detection under rainy conditions.
arXiv Detail & Related papers (2024-02-28T17:21:02Z) - NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance
Fields [20.887421720818892]
We present NeRF-LIDAR, a novel LiDAR simulation method that leverages real-world information to generate realistic LIDAR point clouds.
We verify the effectiveness of our NeRF-LiDAR by training different 3D segmentation models on the generated LiDAR point clouds.
arXiv Detail & Related papers (2023-04-28T12:41:28Z) - PCGen: Point Cloud Generator for LiDAR Simulation [10.692184635629792]
Existing methods generate data which are more noisy and complete than the real point clouds.
We propose FPA raycasting and surrogate model raydrop.
With minimal training data, the surrogate model can generalize to different geographies and scenes.
Results show that object detection models trained by simulation data can achieve similar result as the real data trained model.
arXiv Detail & Related papers (2022-10-17T04:13:21Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in
Adverse Weather [92.84066576636914]
This work addresses the challenging task of LiDAR-based 3D object detection in foggy weather.
We tackle this problem by simulating physically accurate fog into clear-weather scenes.
We are the first to provide strong 3D object detection baselines on the Seeing Through Fog dataset.
arXiv Detail & Related papers (2021-08-11T14:37:54Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Recovering and Simulating Pedestrians in the Wild [81.38135735146015]
We propose to recover the shape and motion of pedestrians from sensor readings captured in the wild by a self-driving car driving around.
We incorporate the reconstructed pedestrian assets bank in a realistic 3D simulation system.
We show that the simulated LiDAR data can be used to significantly reduce the amount of real-world data required for visual perception tasks.
arXiv Detail & Related papers (2020-11-16T17:16:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.