A New Adversarial Perspective for LiDAR-based 3D Object Detection
- URL: http://arxiv.org/abs/2412.13017v1
- Date: Tue, 17 Dec 2024 15:36:55 GMT
- Title: A New Adversarial Perspective for LiDAR-based 3D Object Detection
- Authors: Shijun Zheng, Weiquan Liu, Yu Guo, Yu Zang, Siqi Shen, Cheng Wang,
- Abstract summary: We introduce a real-world dataset (ROLiD) comprising LiDAR-scanned point clouds of two random objects: water mist and smoke.
We propose a point cloud sequence generation method using a motion and content decomposition generative adversarial network named PCS-GAN.
Experiments demonstrate that adversarial perturbations based on random objects effectively deceive vehicle detection and reduce the recognition rate of 3D object detection models.
- Score: 15.429996348453967
- License:
- Abstract: Autonomous vehicles (AVs) rely on LiDAR sensors for environmental perception and decision-making in driving scenarios. However, ensuring the safety and reliability of AVs in complex environments remains a pressing challenge. To address this issue, we introduce a real-world dataset (ROLiD) comprising LiDAR-scanned point clouds of two random objects: water mist and smoke. In this paper, we introduce a novel adversarial perspective by proposing an attack framework that utilizes water mist and smoke to simulate environmental interference. Specifically, we propose a point cloud sequence generation method using a motion and content decomposition generative adversarial network named PCS-GAN to simulate the distribution of random objects. Furthermore, leveraging the simulated LiDAR scanning characteristics implemented with Range Image, we examine the effects of introducing random object perturbations at various positions on the target vehicle. Extensive experiments demonstrate that adversarial perturbations based on random objects effectively deceive vehicle detection and reduce the recognition rate of 3D object detection models.
Related papers
- Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection [12.633311483061647]
Out-of-distribution (OOD) objects can lead to misclassifications, posing a significant risk to the safety and reliability of automated vehicles.
We propose a new evaluation protocol that allows the use of existing datasets without modifying the point cloud.
The effectiveness of our method is validated through experiments on the newly proposed nuScenes OOD benchmark.
arXiv Detail & Related papers (2024-04-24T13:48:38Z) - Towards Robust 3D Object Detection In Rainy Conditions [10.920640666237833]
We propose a framework for improving the robustness of LiDAR-based 3D object detectors against road spray.
Our approach uses a state-of-the-art adverse weather detection network to filter out spray from the LiDAR point cloud.
In addition to adverse weather filtering, we explore the use of radar targets to further filter false positive detections.
arXiv Detail & Related papers (2023-10-02T07:34:15Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Event Camera and LiDAR based Human Tracking for Adverse Lighting
Conditions in Subterranean Environments [2.9988822560180437]
In this article, we propose a novel LiDAR and event camera fusion modality for subterranean environments.
In the proposed approach, information from the event camera and LiDAR are fused to localize a human or an object-of-interest in a robot's local frame.
The efficacy of the proposed scheme has been experimentally validated in a real SubT environment with a Pioneer 3AT mobile robot.
arXiv Detail & Related papers (2023-04-18T11:27:41Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
In autonomous driving, LiDAR and radar are crucial for environmental perception.
Recent state-of-the-art works reveal that the fusion of radar and LiDAR can lead to robust detection in adverse weather.
We propose a bird's-eye view fusion learning-based anchor box-free object detection system.
arXiv Detail & Related papers (2022-11-11T10:24:42Z) - LiDAR Snowfall Simulation for Robust 3D Object Detection [116.10039516404743]
We propose a physically based method to simulate the effect of snowfall on real clear-weather LiDAR point clouds.
Our method samples snow particles in 2D space for each LiDAR line and uses the induced geometry to modify the measurement for each LiDAR beam.
We use our simulation to generate partially synthetic snowy LiDAR data and leverage these data for training 3D object detection models that are robust to snowfall.
arXiv Detail & Related papers (2022-03-28T21:48:26Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.