論文の概要: How Deep is Your Art: An Experimental Study on the Limits of Artistic
Understanding in a Single-Task, Single-Modality Neural Network
- arxiv url: http://arxiv.org/abs/2203.16031v2
- Date: Fri, 1 Apr 2022 02:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 11:08:13.396552
- Title: How Deep is Your Art: An Experimental Study on the Limits of Artistic
Understanding in a Single-Task, Single-Modality Neural Network
- Title(参考訳): 芸術の深み:シングルタスク・シングルモーダルニューラルネットワークにおける芸術的理解の限界に関する実験的研究
- Authors: Mahan Agha Zahedi, Niloofar Gholamrezaei, Alex Doboli
- Abstract要約: 本稿では,現代の2次元視覚芸術の分類において,単一タスク,単一モードのコンピュータビジョンモデルが果たす限界について検討する。
これは、Deep Neural Networksがアートを理解するメカニズムを明らかにするために、混乱行列から派生した既存の評価指標を使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mathematical modeling and aesthetic rule extraction of works of art are
complex activities. This is because art is a multidimensional, subjective
discipline. Perception and interpretation of art are, to many extents, relative
and open-ended rather than measurable. Following the explainable Artificial
Intelligence paradigm, this paper investigated in a human-understandable
fashion the limits to which a single-task, single-modality benchmark computer
vision model performs in classifying contemporary 2D visual arts. It is
important to point out that this work does not introduce an interpreting method
to open the black box of Deep Neural Networks, instead it uses existing
evaluating metrics derived from the confusion matrix to try to uncover the
mechanism with which Deep Neural Networks understand art. To achieve so,
VGG-11, pre-trained on ImageNet and discriminatively fine-tuned, was used on
handcrafted small-data datasets designed from real-world photography gallery
shows. We demonstrated that the artwork's Exhibited Properties or formal
factors such as shape and color, rather than Non-Exhibited Properties or
content factors such as history and intention, have much higher potential to be
the determinant when art pieces have very similar Exhibited Properties. We also
showed that a single-task and single-modality model's understanding of art is
inadequate as it largely ignores Non-Exhibited Properties.
- Abstract(参考訳): 芸術作品の数学的モデリングと審美規則抽出は複雑な活動である。
これは芸術が多次元の主観的な規律であるからである。
芸術の知覚と解釈は多くの点で、測定可能というよりむしろ相対的でオープンなものである。
本稿では,現代の2次元視覚芸術の分類において,単一タスク,単一モダリティのベンチマークコンピュータビジョンモデルが果たす限界について,人間の理解可能な方法で検討した。
この研究は、Deep Neural Networksのブラックボックスを開くための解釈方法を導入せず、むしろ、混乱行列から導かれた既存の評価指標を使用して、Deep Neural Networksが芸術を理解するメカニズムを明らかにすることが重要である。
そのため、ImageNetで事前訓練されたVGG-11は、実世界のギャラリーから設計された手作りの小型データデータセットに使用された。
美術品の表現特性や形状や色彩といった形式的要因は,非過剰な性質や歴史や意図といった内容要因よりも,芸術作品が非常に類似した表現特性を持つ場合,決定要因となる可能性がはるかに高いことを実証した。
また, 単一タスクモデルと単一モダリティモデルによる美術の理解が不十分であることを示し, 非展示性を無視した。
関連論文リスト
- Feature CAM: Interpretable AI in Image Classification [2.4409988934338767]
セキュリティ、金融、健康、製造業など、重要かつ高精度な分野で人工知能を使用するという信頼の欠如がある。
本稿では,摂動・活性化の組み合わせに該当する特徴CAM(Feature CAM)を提案する。
その結果, ABMの3~4倍の精度が得られた。
論文 参考訳(メタデータ) (2024-03-08T20:16:00Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - InDL: A New Dataset and Benchmark for In-Diagram Logic Interpretation
based on Visual Illusion [1.7980584146314789]
本稿では,深層学習モデルの論理解釈能力を評価するための新しい手法を提案する。
これらのモデルを厳格にテストし、ベンチマークするために設計された、ユニークなデータセットであるInDLを構築します。
我々は、6つの古典的な幾何学的錯視を利用して、人間と機械の視覚知覚の比較フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-28T13:01:32Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
アートスコア(ArtScore)は、アーティストによる本物のアートワークと画像がどの程度似ているかを評価するために設計されたメトリクスである。
我々は、写真とアートワークの生成のために事前訓練されたモデルを採用し、一連の混合モデルを生み出した。
このデータセットはニューラルネットワークのトレーニングに使用され、任意の画像の定量化精度レベルを推定する方法を学ぶ。
論文 参考訳(メタデータ) (2023-05-08T17:58:27Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - What if This Modified That? Syntactic Interventions via Counterfactual
Embeddings [19.3614797257652]
先行技術は、プローブを通してモデル表現内の有意義な特性を明らかにすることを目的としているが、そのようなプローブがモデルが実際に使っている情報をどのように忠実に表現しているかは明らかではない。
本稿では,因果解析にインスパイアされた手法を提案する。
本手法の実験では,下流予測タスクにおいて,BERTをベースとしたモデルでは木間距離のような構文表現が用いられていることを示す。
論文 参考訳(メタデータ) (2021-05-28T17:27:04Z) - Graph Neural Networks for Knowledge Enhanced Visual Representation of
Paintings [14.89186519385364]
ArtSAGENetは、グラフニューラルネットワーク(GNN)と畳み込みニューラルネットワーク(CNN)を統合する新しいアーキテクチャである。
提案したArtSAGENetは,アーティストとアートワーク間の重要な依存関係をキャプチャし,エンコードする。
本研究は美術品の分析とキュレーションにビジュアルコンテンツとセマンティクスを統合する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-05-17T23:05:36Z) - A Deep Drift-Diffusion Model for Image Aesthetic Score Distribution
Prediction [68.76594695163386]
画像から美的スコアの分布を予測するために,心理学者から着想を得たディープドリフト拡散モデルを提案する。
DDDモデルは、評価結果の伝統的なモデリングではなく、美的知覚の心理的プロセスを記述することができる。
私たちの新しいDDDモデルはシンプルだが効率的であり、美的スコア分布予測における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-15T11:01:46Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
ディープニューラルネットワーク(DNN)の内部動作を説明するために,ニューラルアーキテクチャ・ディコンタングルメント(NAD)を導入する。
NADは、訓練済みのDNNを独立したタスクに従ってサブアーキテクチャに切り離すことを学び、推論プロセスを記述する情報フローを形成する。
その結果、誤分類された画像は、タスクサブアーキテクチャーに正しいサブアーキテクチャーに割り当てられる確率が高いことが示された。
論文 参考訳(メタデータ) (2020-03-30T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。